Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Chem ; 67(16): 14077-14094, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39115131

RESUMEN

The radiohybrid (rh) concept to design targeted (and chemically identical) radiotracers for imaging or radionuclide therapy of tumors has gained momentum. For this strategy, a new bifunctional Silicon-based Fluoride Acceptor (SiFA) moiety (SiFA)SeFe was synthesized, endowed with improved hydrophilicity and high versatility of integration into rh-compounds. Preliminary radiolabeling and stability studies under different conditions were conducted using model bioconjugate peptides. Further, three somatostatin receptor 2 (sstR2)-targeted rh-compounds ((SiFA)SeFe-rhTATE1-3, TATE = (Tyr3)-octreotate) were developed. Compound (SiFA)SeFe-rhTATE3, enables labeling with 18F for PET imaging or chelation of 177Lu for therapy. The rh-compounds possess comparable receptor binding affinity and in vitro performance as good as the clinically proven gold standards. SstR2-specificity was further shown for (SiFA)SeFe-rhTATE2 using the chicken chorioallantoic membrane (CAM) model. The biodistribution of two compounds in mice showed high accumulation in tumors and excretion via the kidneys, demonstrating the clinical applicability of the (SiFA)SeFe moiety.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Receptores de Somatostatina , Animales , Humanos , Ratones , Línea Celular Tumoral , Membrana Corioalantoides/metabolismo , Fluoruros/química , Radioisótopos de Flúor/química , Lutecio/química , Péptidos/química , Tomografía de Emisión de Positrones , Radioisótopos/química , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Receptores de Somatostatina/metabolismo , Silicio/química , Distribución Tisular , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Compuestos de Hierro/química
2.
Npj Imaging ; 2(1): 28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132311

RESUMEN

The ability to image early treatment response to radiotherapy in head and neck squamous cell carcinoma (HNSCC) will enable the identification of radioresistant tumor volumes suitable for treatment intensification. Here, we propose the system xc - radiotracer (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG) as a non-invasive method to monitor radiation response in HNSCC. We assessed temporal changes in cell death, antioxidant status, and [18F]FSPG retention following a single dose of 10 Gy irradiation in FaDU HNSCC cells. Next, using a fractionated course of radiotherapy, we assessed tumor volume changes and performed [18F]FSPG-PET imaging in FaDU-bearing mouse xenografts, followed by ex vivo response assessment. In cells, 10 Gy irradiation reduced [18F]FSPG retention, coinciding with the induction of apoptosis and the production of reactive oxygen species. In vivo, [18F]FSPG tumor retention was halved seven days after the start of treatment, which preceded radiotherapy-induced tumor shrinkage, thereby confirming [18F]FSPG-PET as an early and sensitive marker of radiation response.

3.
Cancers (Basel) ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611114

RESUMEN

BACKGROUND: (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) positron emission tomography/computed tomography (PET/CT) provides a readout of system xc- transport activity and has been used for cancer detection in clinical studies of different cancer types. As system xc- provides the rate-limiting precursor for glutathione biosynthesis, an abundant antioxidant, [18F]FSPG imaging may additionally provide important prognostic information. Here, we performed an analysis of [18F]FSPG radiotracer distribution between primary tumors, metastases, and normal organs from cancer patients. We further assessed the heterogeneity of [18F]FSPG retention between cancer types, and between and within individuals. METHODS: This retrospective analysis of prospectively collected data compared [18F]FSPG PET/CT in subjects with head and neck squamous cell cancer (HNSCC, n = 5) and non-small-cell lung cancer (NSCLC, n = 10), scanned at different institutions. Using semi-automated regions of interest drawn around tumors and metastases, the maximum standardized uptake value (SUVmax), SUVmean, SUV standard deviation and SUVpeak were measured. [18F]FSPG time-activity curves (TACs) for normal organs, primary tumors and metastases were subsequently compared to 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT at 60 min post injection (p.i.). RESULTS: The mean administered activity of [18F]FSPG was 309.3 ± 9.1 MBq in subjects with NSCLC and 285.1 ± 11.3 MBq in those with HNSCC. The biodistribution of [18F]FSPG in both cohorts showed similar TACs in healthy organs from cancer patients. There was no statistically significant overall difference in the average SUVmax of tumor lesions at 60 min p.i. for NSCLC (8.1 ± 7.1) compared to HNSCC (6.0 ± 4.1; p = 0.29) for [18F]FSPG. However, there was heterogeneous retention between and within cancer types; the SUVmax at 60 min p.i. ranged from 1.4 to 23.7 in NSCLC and 3.1-12.1 in HNSCC. CONCLUSION: [18F]FSPG PET/CT imaging from both NSCLC and HNSCC cohorts showed the same normal-tissue biodistribution, but marked tumor heterogeneity across subjects and between lesions. Despite rapid elimination through the urinary tract and low normal-background tissue retention, the diagnostic potential of [18F]FSPG was limited by variability in tumor retention. As [18F]FSPG retention is mediated by the tumor's antioxidant capacity and response to oxidative stress, this heterogeneity may provide important insights into an individual tumor's response or resistance to therapy.

4.
Theranostics ; 14(6): 2464-2488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646648

RESUMEN

Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.


Asunto(s)
Neoplasias , Medicina de Precisión , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Medicina de Precisión/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Historia del Siglo XX , Animales , Historia del Siglo XXI
5.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198573

RESUMEN

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Asunto(s)
Aciduria Argininosuccínica , Hepatopatías , Adulto , Humanos , Animales , Ratones , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/terapia , Cisteína , Glutatión , Metabolómica
6.
Cancers (Basel) ; 15(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067277

RESUMEN

System xc- is upregulated in cancer cells and can be imaged using novel radiotracers, most commonly with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid (18F-FSPG). The aim of this review was to summarise the use of 18F-FSPG in humans, explore the benefits and limitations of 18F-FSPG, and assess the potential for further use of 18F-FSPG in cancer patients. To date, ten papers have described the use of 18F-FSPG in human cancers. These studies involved small numbers of patients (range 1-26) and assessed the use of 18F-FSPG as a general oncological diagnostic agent across different cancer types. These clinical trials were contrasting in their findings, limiting the scope of 18F-FSPG PET/CT as a purely diagnostic agent, primarily due to heterogeneity of 18F-FSPG retention both between cancer types and patients. Despite these limitations, a potential further application for 18F-FSPG is in the assessment of early treatment response and prediction of treatment resistance. Animal models of cancer have shown that changes in 18F-FSPG retention following effective therapy precede glycolytic changes, as indicated by 18F-FDG, and changes in tumour volume, as measured by CT. If these results could be replicated in human clinical trials, imaging with 18F-FSPG PET/CT would offer an exciting route towards addressing the currently unmet clinical needs of treatment resistance prediction and early imaging assessment of therapy response.

7.
bioRxiv ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38168428

RESUMEN

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

8.
Npj Imaging ; 1: 1, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38239706

RESUMEN

Mouse models are invaluable tools for radiotracer development and validation. They are, however, expensive, low throughput, and are constrained by animal welfare considerations. Here, we assessed the chicken chorioallantoic membrane (CAM) as an alternative to mice for preclinical cancer imaging studies. NCI-H460 FLuc cells grown in Matrigel on the CAM formed vascularized tumors of reproducible size without compromising embryo viability. By designing a simple method for vessel cannulation it was possible to perform dynamic PET imaging in ovo, producing high tumor-to-background signal for both 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) and (4S)-4-(3-18F-fluoropropyl)-L-glutamate (18F-FSPG). The pattern of 18F-FDG tumor uptake were similar in ovo and in vivo, although tumor-associated radioactivity was higher in the CAM-grown tumors over the 60 min imaging time course. Additionally, 18F-FSPG provided an early marker of both treatment response to external beam radiotherapy and target inhibition in ovo. Overall, the CAM provided a low-cost alternative to tumor xenograft mouse models which may broaden access to PET and SPECT imaging and have utility across multiple applications.

9.
RSC Chem Biol ; 3(5): 561-570, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656483

RESUMEN

Therapy resistance is one of the biggest challenges facing clinical oncology. Despite a revolution in new anti-cancer drugs targeting multiple components of the tumour microenvironment, acquired or innate resistance frequently blunts the efficacy of these treatments. Non-invasive identification of drug-resistant tumours will enable modification of the patient treatment pathway through the selection of appropriate second-line treatments. Here, we have designed a prodrug radiotracer for the non-invasive imaging of aldehyde dehydrogenase 1A1 (ALDH1A1) activity. Elevated ALDH1A1 activity is a marker of drug-resistant cancer cells, modelled here with matched cisplatin-sensitive and -resistant human SKOV3 ovarian cancer cells. The aromatic aldehyde of our prodrug radiotracer was intracellularly liberated by esterase cleavage of the geminal diacetate and specifically trapped by ALDH through its conversion to the charged carboxylic acid. Through this mechanism of action, ALDH-specific retention of our prodrug radiotracer in the drug-resistant tumour cells was twice as high as the drug-sensitive cells. Acylal masking of the aldehyde afforded a modest protection from oxidation in the blood, which was substantially improved in carrier-added experiments. In vivo positron emission tomography imaging of tumour-bearing mice produced high tumour-to-background images and radiotracer uptake in high ALDH-expressing organs but was unable to differentiate between drug-sensitive and drug-resistant tumours. Alternative strategies to protect the labile aldehyde are currently under investigation.

10.
Theranostics ; 12(4): 1921-1936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198080

RESUMEN

Amino acid utilization is perturbed in cancer cells, which rewire their metabolism to support cell survival and proliferation. This metabolic reprogramming can be exploited for diagnostic purposes through positron emission tomography imaging of fluorine-18 labeled amino acids. Despite its promise, little is known regarding transporter-recognition of non-natural amino acid stereoisomers or their utility for cancer imaging. We report here the synthesis and in vivo characterization of a radiolabeled amino acid (R)-4-(3-18F-fluoropropyl)-ʟ-glutamate ([18F]FRPG) and compared its tumor imaging properties to the 4S-isomer, [18F]FSPG. Methods: [18F]FRPG and [18F]FSPG uptake was assessed in H460 lung cancer cells, with efflux measured 30 min after removal of exogenous activity. Specificity of [18F]FRPG for system xC- was further examined following transporter inhibition and blocking studies with system xC- substrates. [18F]FRPG and [18F]FSPG pharmacokinetics was next quantified in mice bearing subcutaneous A549, H460, VCAP and PC3 tumors, with mice bearing A549 tumors imaged by PET/CT. To better-understand differential tumor retention, radiometabolite analysis was performed on tissue and blood samples after imaging. Next, [18F]FRPG and [18F]FSPG retention in lipopolysaccharide-treated lungs were compared to an orthotopic H460 lung cancer model. Finally, the sensitivity of [18F]FRPG to manipulation of the redox environment was examined in cell and in vivo models. Results: [18F]FRPG was specifically transported across the plasma membrane by the cystine/glutamate antiporter system xC- and retained at high levels in multiple tumor models. Conversely, [18F]FRPG was rapidly extracted from the blood and cleared from tissues with low system xC- expression. Due to its favorable imaging properties, tumor-to-blood ratios ≥10 were achieved with [18F]FRPG, which were either equal to or greater than [18F]FSPG. In addition, [18F]FRPG retention in orthotopic lung tumors with high system xC- expression was 2.5-fold higher than inflamed tissue, allowing for clear tumor visualization. In vivo, [18F]FRPG and [18F]FSPG were metabolized to a single species, with [18F]FRPG showing a higher percentage of parent radiotracer in tumors compared to [18F]FSPG. [18F]FRPG was sensitive to redox manipulations and tumor retention was reduced following treatment with liposomal doxorubicin in mice bearing ovarian tumors. Conclusions: Given the fast clearance and low background retention of [18F]FRPG throughout the body, this radiotracer holds promise for the imaging of system xC- activity and treatment response monitoring in tumors of the thorax, abdomen, and head and neck. [18F]FRPG PET imaging provides a sensitive noninvasive measure of system xC- and excellent properties for cancer imaging.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Ováricas , Animales , Línea Celular Tumoral , Femenino , Ácido Glutámico , Humanos , Cinética , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Neoplasias Ováricas/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética
11.
J Nucl Med ; 62(11): 1506-1510, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34353871

RESUMEN

Oxidative stress is the imbalance of harmful reactive oxygen species (ROS) and the action of neutralizing antioxidant mechanisms. If left unchecked, the deleterious effects of oxidative stress result in damage to DNA, proteins, and membranes, ultimately leading to cell death. Tumors are highly proliferative and consequently generate high levels of mitochondrial ROS. To compensate for this and maintain redox homeostasis, cancer cells upregulate protective antioxidant pathways, which are further amplified in drug-resistant tumors. This review provides an overview of the latest molecular imaging techniques designed to image oxidative stress in cancer. New probes can now assess heterogeneous ROS and antioxidant production within tumors and across lesions. Together, the noninvasive imaging of these dynamic processes holds great promise for monitoring response to treatment and predicting drug resistance and may provide insight into the metastatic potential of tumors.


Asunto(s)
Estrés Oxidativo , Humanos , Mitocondrias , Neoplasias , Especies Reactivas de Oxígeno
12.
Mol Imaging Biol ; 23(6): 854-864, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34013395

RESUMEN

PURPOSE: (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. PROCEDURES: An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. RESULTS: The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/µmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. CONCLUSIONS: We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Fluoruros , Ratones , Tomografía de Emisión de Positrones/métodos , Radioquímica/métodos , Radiofármacos
13.
Cancer Imaging ; 21(1): 18, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516256

RESUMEN

Nuclear medicine has evolved over the last half-century from a functional imaging modality using a handful of radiopharmaceuticals, many of unknown structure and mechanism of action, into a modern speciality that can properly be described as molecular imaging, with a very large number of specific radioactive probes of known structure that image specific molecular processes. The advances of cancer treatment in recent decades towards targeted and immune therapies, combined with recognition of heterogeneity of cancer cell phenotype among patients, within patients and even within tumours, has created a growing need for personalised molecular imaging to support treatment decision. This article describes the evolution of the present vast range of radioactive probes - radiopharmaceuticals - leveraging a wide variety of chemical disciplines, over the last half century. These radiochemical innovations have been inspired by the need to support personalised medicine and also by the parallel development in development of new radionuclide imaging technologies - from gamma scintigraphy, through single photon emission tomography (SPECT), through the rise of clinical positron emission tomography (PET) and PET-CT, and perhaps in the future, by the advent of total body PET. Thus, in the interdisciplinary world of nuclear medicine and molecular imaging, as quickly as radiochemistry solutions are developed to meet new needs in cancer imaging, new challenges emerge as developments in one contributing technology drive innovations in the others.


Asunto(s)
Inmunoterapia/métodos , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radioisótopos/metabolismo , Radiofármacos/metabolismo , Humanos
14.
PLoS One ; 15(7): e0235804, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645089

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0091694.].

15.
Org Lett ; 22(1): 274-278, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31851521

RESUMEN

Herein, we report that iron(II)/ammonium persulfate in aqueous acetonitrile mediates the Newman-Kwart rearrangement of O-aryl carbamothioates. Electron-rich substrates react rapidly under moderate heating to afford the rearranged products in excellent yields. The mild conditions, rapid reaction rates, and suitability for scale up offers immediate practical benefits to access functionalized thiophenols.

16.
J Nucl Med ; 61(2): 292-297, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31519806

RESUMEN

A considerable limitation of current small-animal PET/CT imaging is the low throughput of acquisitions. Consequently, to sufficiently power a study, high costs accumulate. Together with a commercial scanner manufacturer, we developed a 4-bed mouse "hotel" to simultaneously image up to 4 mice, thereby reducing costs and maximizing the efficiency of radiotracer use when compared with scans performed with a single mouse bed. Methods: For physiologic evaluation of the mouse hotel, temperature and anesthesia were tested for uniformity in conjunction with 18F-FDG PET/CT imaging of mini image-quality phantoms designed to fit the new imaging system. After reconstruction, National Electrical Manufacturers Association NU-4 tests examined uniformity, recovery coefficients, and spillover ratios. To evaluate the mouse hotel under standard in vivo imaging conditions, 4 mice were simultaneously scanned by dynamic 18F-FDG PET/CT over 60 min, and quantified images were compared with those acquired using a single mouse bed. Results: The mouse hotel maintained a constant temperature of 36.8°C ± 0.4°C, with anesthesia distributed evenly to each nose cone (2.9 ± 0.1 L/min). The National Electrical Manufacturers Association tests revealed values within tolerable limits for uniformity, for recovery coefficients in rods larger than 2 mm, and for spillover ratios in the nonradioactive water- and air-filled chambers. There was low variability in radiotracer uptake in all major organs for the mouse hotel versus the single mouse bed. Conclusion: Analysis of images acquired using the mouse hotel confirmed its utility to increase the throughput of small-animal PET imaging without considerable loss of image quality or quantitative precision. In comparison to a single mouse bed, the cost and time associated with each scan were substantially reduced.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Femenino , Fluorodesoxiglucosa F18 , Ratones , Ratones Endogámicos BALB C , Fantasmas de Imagen
17.
Sci Rep ; 9(1): 19299, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848442

RESUMEN

Induction of apoptosis is often necessary for successful cancer therapy, and the non-invasive monitoring of apoptosis post-therapy could assist in clinical decision making. Isatins are a class of compounds that target activated caspase-3 during apoptosis. Here we report the synthesis of the 5-iodo-1,2,3-triazole (FITI) analog of the PET tracer [18F]ICMT11 as a candidate tracer for imaging of apoptosis with SPECT, as well as PET. Labelling with radioiodine (123,125I) was achieved in 55 ± 12% radiochemical yield through a chelator-accelerated one-pot cycloaddition reaction mediated by copper(I) catalysis. The caspase-3 binding affinity and selectivity of FITI compares favourably to that of [18F]ICMT11 (Ki = 6.1 ± 0.9 nM and 12.4 ± 4.7 nM, respectively). In biodistribution studies, etoposide-induced cell death in a SW1222 xenograft model resulted in a 2-fold increase in tumour uptake of the tracer. However, the tumour uptake was too low to allow in vivo imaging of apoptosis with SPECT.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/aislamiento & purificación , Radioisótopos de Yodo/farmacología , Neoplasias/diagnóstico por imagen , Animales , Apoptosis/genética , Caspasa 3/química , Caspasa 3/genética , Línea Celular Tumoral , Cobre/química , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacología , Xenoinjertos , Humanos , Radioisótopos de Yodo/química , Isatina/síntesis química , Isatina/farmacología , Ratones , Neoplasias/patología , Neoplasias/terapia , Radiofármacos/síntesis química , Radiofármacos/farmacología , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos , Triazoles/síntesis química , Triazoles/farmacología
18.
Nat Commun ; 10(1): 4673, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611594

RESUMEN

Advances in precision molecular imaging promise to transform our ability to detect, diagnose and treat disease. Here, we describe the engineering and validation of a new cystine knot peptide (knottin) that selectively recognizes human integrin αvß6 with single-digit nanomolar affinity. We solve its 3D structure by NMR and x-ray crystallography and validate leads with 3 different radiolabels in pre-clinical models of cancer. We evaluate the lead tracer's safety, biodistribution and pharmacokinetics in healthy human volunteers, and show its ability to detect multiple cancers (pancreatic, cervical and lung) in patients at two study locations. Additionally, we demonstrate that the knottin PET tracers can also detect fibrotic lung disease in idiopathic pulmonary fibrosis patients. Our results indicate that these cystine knot PET tracers may have potential utility in multiple disease states that are associated with upregulation of integrin αvß6.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Fibrosis Pulmonar Idiopática/diagnóstico , Integrinas/metabolismo , Neoplasias/diagnóstico , Cristalografía por Rayos X , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
19.
Theranostics ; 9(25): 7924-7947, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31656546

RESUMEN

Immunotherapy has proven to be an effective approach in a growing number of cancers. Despite durable clinical responses achieved with antibodies targeting immune checkpoint molecules, many patients do not respond. The common denominator for immunotherapies that have successfully been introduced in the clinic is their potential to induce or enhance infiltration of cytotoxic T-cells into the tumour. However, in clinical research the molecules, cells and processes involved in effective responses during immunotherapy remain largely obscure. Therefore, in vivo imaging technologies that interrogate T-cell responses in patients represent a powerful tool to boost further development of immunotherapy. This review comprises a comprehensive analysis of the in vivo imaging technologies that allow the characterisation of T-cell responses induced by anti-cancer immunotherapy, with emphasis on technologies that are clinically available or have high translational potential. Throughout we discuss their respective strengths and weaknesses, providing arguments for selecting the optimal imaging options for future research and patient management.


Asunto(s)
Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Humanos , Inmunoterapia/métodos
20.
Bioconjug Chem ; 30(5): 1331-1342, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30973715

RESUMEN

Poly(ADP ribose) polymerase (PARP) enzymes generate poly(ADP ribose) post-translational modifications on target proteins for an array of functions centering on DNA and cell stress. PARP isoforms 1 and 2 are critically charged with the surveillance of DNA integrity and are the first line guardians of the genome against DNA breaks. Here we present a novel probe ([18F]-SuPAR) for noninvasive imaging of PARP-1/2 activity using positron emission tomography (PET). [18F]-SuPAR is a radiofluorinated nicotinamide adenine dinucleotide (NAD) analog that can be recognized by PARP-1/2 and incorporated into the long branched polymers of poly(ADP ribose) (PAR). The measurement of PARP-1/2 activity was supported by a reduction of radiotracer uptake in vivo following PARP-1/2 inhibition with talazoparib treatment, a potent PARP inhibitor recently approved by FDA for treatment of breast cancer, as well as ex vivo colocalization of radiotracer analog and poly(ADP ribose). With [18F]-SuPAR, we were able to map the dose- and time-dependent activation of PARP-1/2 following radiation therapy in breast and cervical cancer xenograft mouse models. Tumor response to therapy was determined by [18F]-SuPAR PET within 8 h of administration of a single dose of radiation equivalent to one round of stereotactic ablative radiotherapy.


Asunto(s)
Daño del ADN , Radioisótopos de Flúor/administración & dosificación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , NAD/metabolismo , Tomografía de Emisión de Positrones , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Especificidad por Sustrato , Neoplasias del Cuello Uterino/diagnóstico por imagen , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA