Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanoscale ; 13(23): 10490-10499, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34081070

RESUMEN

Pollution of wastewater with heavy metal-ions represents one of the most severe environmental problems associated with societal development. To overcome this issue, the design of new, highly efficient systems capable of removing such toxic species, hence to purify water, is of paramount importance for public health and environmental protection. In this work, novel sorption hybrid materials were developed to enable high-performance adsorption of heavy metal ions. Towards this end, graphene oxide (GO) exhibiting various C/O ratios has been functionalized with ad hoc receptors, i.e. terpyridine ligands. The maximum adsorption capacity of highly oxidized/terpyridine hybrids towards Ni(ii), Zn(ii) and Co(ii) was achieved at pH = 6 and 25 °C reaching values of 462, 421 and 336 mg g-1, respectively, being the highest reported in the literature for pristine GO and GO-based sorbents. Moreover, the uptake experiments showed that heavy metal ion adsorption on GO-Tpy and GOh-Tpy is strongly dependent on pH in the range from 2 to 10, as a result of the modulation of interactions at the supramolecular level. Moreover, the ionic strength was found to be independent of heavy metal ion adsorption on GO-Tpy and GOh-Tpy. Under ambient conditions, adsorption capacity values increase with the degree of oxidation of GO because dipolar oxygen units can both interact with heavy-metal ions via dipole-dipole and/or ionic interactions and enable bonding of more covalently anchored terpyridine units. Both adsorption isotherms and kinetics studies revealed that the uptake of the heavy metal ions occurs at a monolayer coverage, mostly controlled by the strong surface complexation with the oxygen of GO and nitrogen-containing groups of terpyridine. Furthermore, selectivity of the hybrid was confirmed by selective sorption of the above heavy metal ions from mixtures involving alkali (Na(i), K(i)) and alkaline Earth (Mg(ii), Ca(ii)) metal ions due to the chelating properties of the terpyridine subunits, as demonstrated with municipal drinking (tap) water samples. Our findings provide unambiguous evidence for the potential of chemical tailoring of GO-based materials with N-heterocyclic ligands as sorbent materials for highly efficient wastewater purification.

2.
Nanoscale ; 12(36): 18733-18741, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32970083

RESUMEN

Supercapacitor energy storage devices recently garnered considerable attention due to their cost-effectiveness, eco-friendly nature, high power density, moderate energy density, and long-term cycling stability. Such figures of merit render supercapacitors unique energy sources to power portable electronic devices. Among various energy storage materials, graphene-related materials have established themselves as ideal electrodes for the development of elite supercapacitors because of their excellent electrical conductivity, high surface area, outstanding mechanical properties combined with the possibility to tailor various physical and chemical properties via chemical functionalization. Increasing the surface area is a powerful strategy to improve the performance of supercapacitors. Here, modified polyhedral oligosilsesquioxane (POSS) is used to improve the electrochemical performance of reduced graphene oxide (rGO) through the enhancement of porosity and the extension of interlayer space between the sheets allowing efficient electrolyte transport. rGO-POSS hybrids exhibited a high specific capacitance of 174 F g-1, power density reaching 2.25 W cm-3, and high energy density of 41.4 mW h cm-3 endowed by the introduction of POSS spacers. Moreover, these electrode materials display excellent durability reaching >98% retention after 5000 cycles.

3.
Adv Mater ; 31(1): e1804600, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30387217

RESUMEN

The development of pressure sensors is crucial for the implementation of electronic skins and for health monitoring integrated into novel wearable devices. Tremendous effort is devoted toward improving their sensitivity, e.g., by employing microstructured electrodes or active materials through cumbersome processes. Here, a radically new type of piezoresistive pressure sensor based on a millefeuille-like architecture of reduced graphene oxide (rGO) intercalated by covalently tethered molecular pillars holding on-demand mechanical properties are fabricated. By applying a tiny pressure to the multilayer structure, the electron tunnelling ruling the charge transport between successive rGO sheets yields a colossal decrease in the material's electrical resistance. Significantly, the intrinsic rigidity of the molecular pillars employed enables the fine-tuning of the sensor's sensitivity, reaching sensitivities as high as 0.82 kPa-1 in the low pressure region (0-0.6 kPa), with short response times (≈24 ms) and detection limit (7 Pa). The pressure sensors enable efficient heartbeat monitoring and can be easily transformed into a matrix capable of providing a 3D map of the pressure exerted by different objects.


Asunto(s)
Grafito/química , Monitoreo Fisiológico/métodos , Presión , Dispositivos Electrónicos Vestibles , Electricidad , Electrodos , Humanos , Límite de Detección , Monitoreo Fisiológico/instrumentación
4.
J Am Chem Soc ; 141(1): 482-487, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30517783

RESUMEN

Toward the introduction of fast faradaic pseudocapacitive behavior and the increase of the specific capacitance of carbon-based electrodes, we covalently functionalized graphene oxide with a redox active thiourea-formaldehyde polymer, yielding a multifunctional hybrid system. The multiscale physical and chemical characterization of the novel 3-dimensional hybrid revealed high material porosity with high specific surface area (402 m2 g-1) and homogeneous element distribution. The presence of multiple functional groups comprising sulfur, nitrogen, and oxygen provide additional contribution of Faradaic redox reaction in supercapacity performance, leading to a high effective electrochemical pseudocapacitance. Significantly, our graphene-based 3-dimensional thiourea-formaldehyde hybrid exhibited specific capacitance as high as 400 F g-1, areal capacitance of 160 mF cm-2, and an energy density of 11.1 mWh cm-3 at scan rate of 1 mV s-1 with great capacitance retention (100%) after 5000 cycles at scan rate of 100 mV s-1.

5.
Dalton Trans ; 47(17): 5948-5951, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632924

RESUMEN

The first example of sodium triethylborohydride-catalyzed C(sp)-H bond silylation is reported. The reaction of aromatic and aliphatic alkynes with aromatic hydrosilanes and hydrosiloxanes proceeded in a highly selective manner to afford dehydrocoupling products. Competitive hydrosilylation of the terminal alkyne did not occur as a side-reaction. In view of the above it is remarkable that NaHBEt3 is commonly used as a reducing agent generating active transition-metal catalysts in situ in other hydrosilylation reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA