Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Cell Biol ; 26(6): 868-877, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849542

RESUMEN

Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time. We find that extraembryonic gut cells display substantial memory of their developmental origin including retention of the original DNA methylation landscape and resulting transcriptional signatures. Furthermore, we show that extraembryonic gut cells undergo programmed cell death and neighbouring embryonic cells clear their remnants via non-professional phagocytosis. By midgestation, we no longer detect extraembryonic cells in the wild-type gut, whereas they persist and differentiate further in p53-mutant embryos. Our study provides key insights into the molecular and developmental fate of extraembryonic cells inside the embryo.


Asunto(s)
Apoptosis , Linaje de la Célula , Metilación de ADN , Endodermo , Regulación del Desarrollo de la Expresión Génica , Animales , Endodermo/citología , Endodermo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fagocitosis , Ratones Endogámicos C57BL , Ratones , Diferenciación Celular , Femenino , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ratones Transgénicos , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo
2.
Genome Res ; 34(4): 572-589, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38719471

RESUMEN

Dormancy is a key feature of stem cell function in adult tissues as well as in embryonic cells in the context of diapause. The establishment of dormancy is an active process that involves extensive transcriptional, epigenetic, and metabolic rewiring. How these processes are coordinated to successfully transition cells to the resting dormant state remains unclear. Here we show that microRNA activity, which is otherwise dispensable for preimplantation development, is essential for the adaptation of early mouse embryos to the dormant state of diapause. In particular, the pluripotent epiblast depends on miRNA activity, the absence of which results in the loss of pluripotent cells. Through the integration of high-sensitivity small RNA expression profiling of individual embryos and protein expression of miRNA targets with public data of protein-protein interactions, we constructed the miRNA-mediated regulatory network of mouse early embryos specific to diapause. We find that individual miRNAs contribute to the combinatorial regulation by the network, and the perturbation of the network compromises embryo survival in diapause. We further identified the nutrient-sensitive transcription factor TFE3 as an upstream regulator of diapause-specific miRNAs, linking cytoplasmic MTOR activity to nuclear miRNA biogenesis. Our results place miRNAs as a critical regulatory layer for the molecular rewiring of early embryos to establish dormancy.


Asunto(s)
Proliferación Celular , MicroARNs , Células Madre Pluripotentes , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Desarrollo Embrionario/genética , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Blastocisto/metabolismo , Blastocisto/citología , Femenino
3.
Nature ; 623(7988): 772-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968388

RESUMEN

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de Enfermedad
4.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932452

RESUMEN

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Asunto(s)
Factores de Transcripción GATA , ARN Largo no Codificante , Animales , Femenino , Ratones , Fertilización/genética , Factores de Transcripción GATA/genética , Mamíferos , ARN Largo no Codificante/genética , Regulación hacia Arriba , Cromosoma X , Inactivación del Cromosoma X/genética
5.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882764

RESUMEN

The node and notochord are important signaling centers organizing the dorso-ventral patterning of cells arising from neuro-mesodermal progenitors forming the embryonic body anlage. Owing to the scarcity of notochord progenitors and notochord cells, a comprehensive identification of regulatory elements driving notochord-specific gene expression has been lacking. Here, we have used ATAC-seq analysis of FACS-purified notochord cells from Theiler stage 12-13 mouse embryos to identify 8921 putative notochord enhancers. In addition, we established a new model for generating notochord-like cells in culture, and found 3728 of these enhancers occupied by the essential notochord control factors brachyury (T) and/or Foxa2. We describe the regulatory landscape of the T locus, comprising ten putative enhancers occupied by these factors, and confirmed the regulatory activity of three of these elements. Moreover, we characterized seven new elements by knockout analysis in embryos and identified one new notochord enhancer, termed TNE2. TNE2 cooperates with TNE in the trunk notochord, and is essential for notochord differentiation in the tail. Our data reveal an essential role of Foxa2 in directing T-expressing cells towards the notochord lineage.


Asunto(s)
Elementos de Facilitación Genéticos , Notocorda , Ratones , Animales , Elementos de Facilitación Genéticos/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética
6.
Development ; 150(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519269

RESUMEN

Changes in gene expression represent an important source of phenotypic innovation. Yet how such changes emerge and impact the evolution of traits remains elusive. Here, we explore the molecular mechanisms associated with the development of masculinizing ovotestes in female moles. By performing integrative analyses of epigenetic and transcriptional data in mole and mouse, we identified the co-option of SALL1 expression in mole ovotestes formation. Chromosome conformation capture analyses highlight a striking conservation of the 3D organization at the SALL1 locus, but an evolutionary divergence of enhancer activity. Interspecies reporter assays support the capability of mole-specific enhancers to activate transcription in urogenital tissues. Through overexpression experiments in transgenic mice, we further demonstrate the capability of SALL1 to induce kidney-related gene programs, which are a signature of mole ovotestes. Our results highlight the co-option of gene expression, through changes in enhancer activity, as a plausible mechanism for the evolution of traits.


Asunto(s)
Riñón , Topos , Animales , Femenino , Ratones , Riñón/metabolismo , Ratones Transgénicos , Topos/genética
7.
Nat Genet ; 55(7): 1176-1185, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414952

RESUMEN

Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional 'virtual embryos', which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of 'ectopic' neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes.


Asunto(s)
Organogénesis , Transcriptoma , Ratones , Animales , Transcriptoma/genética , Organogénesis/genética , Desarrollo Embrionario/genética , Embrión de Mamíferos , Fenotipo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Dominio T Box/genética
9.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37082965

RESUMEN

Cardiac lineage specification in the mouse is controlled by TGFß and WNT signaling. From fly to fish, BMP has been identified as an indispensable heart inducer. A detailed analysis of the role of Bmp4 and its effectors Smad1/5, however, was still missing. We show that Bmp4 induces cardiac mesoderm formation in murine embryonic stem cells in vitro. Bmp4 first activates Wnt3 and upregulates Nodal. pSmad1/5 and the WNT effector Tcf3 form a complex, and together with pSmad2/3 activate mesoderm enhancers and Eomes. They then cooperate with Eomes to consolidate the expression of many mesoderm factors, including T. Eomes and T form a positive- feedback loop and open additional enhancers regulating early mesoderm genes, including the transcription factor Mesp1, establishing the cardiac mesoderm lineage. In parallel, the neural fate is suppressed. Our data confirm the pivotal role of Bmp4 in cardiac mesoderm formation in the mouse. We describe in detail the consecutive and cooperative actions of three signaling pathways, BMP, WNT and Nodal, and their effector transcription factors, during cardiac mesoderm specification.


Asunto(s)
Corazón , Factores de Transcripción , Ratones , Animales , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Mesodermo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/genética , Proteína Morfogenética Ósea 4/metabolismo
10.
Nat Commun ; 14(1): 1475, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36928426

RESUMEN

Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos , Reordenamiento Génico , Deformidades Congénitas de las Extremidades , Animales , Ratones , Expresión Génica , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Fenotipo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética
11.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179666

RESUMEN

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Asunto(s)
Cromatina , Placenta , Animales , Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Nat Genet ; 54(8): 1238-1247, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864192

RESUMEN

Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate 'hijacking' of transcriptional condensates in various developmental and disease contexts.


Asunto(s)
Retrovirus Endógenos , Animales , Células Madre Embrionarias , Retrovirus Endógenos/genética , Heterocromatina , Mamíferos/genética , Ratones , Cuerpos Nucleares , Retroelementos
13.
Nat Genet ; 54(7): 1026-1036, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817979

RESUMEN

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.


Asunto(s)
Cromatina , Estudio de Asociación del Genoma Completo , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Genoma/genética , Ratones
14.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617427

RESUMEN

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Asunto(s)
Cromosomas , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Histonas , Complejo Represivo Polycomb 2 , Animales , Inmunoprecipitación de Cromatina/métodos , Cromosomas/química , Cromosomas/metabolismo , Embrión de Mamíferos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo
15.
Sci Rep ; 12(1): 3100, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260583

RESUMEN

The northern white rhinoceros (NWR) is probably the earth's most endangered mammal. To rescue the functionally extinct species, we aim to employ induced pluripotent stem cells (iPSCs) to generate gametes and subsequently embryos in vitro. To elucidate the regulation of pluripotency and differentiation of NWR PSCs, we generated iPSCs from a deceased NWR female using episomal reprogramming, and observed surprising similarities to human PSCs. NWR iPSCs exhibit a broad differentiation potency into the three germ layers and trophoblast, and acquire a naïve-like state of pluripotency, which is pivotal to differentiate PSCs into primordial germ cells (PGCs). Naïve culturing conditions induced a similar expression profile of pluripotency related genes in NWR iPSCs and human ESCs. Furthermore, naïve-like NWR iPSCs displayed increased expression of naïve and PGC marker genes, and a higher integration propensity into developing mouse embryos. As the conversion process was aided by ectopic BCL2 expression, and we observed integration of reprogramming factors, the NWR iPSCs presented here are unsuitable for gamete production. However, the gained insights into the developmental potential of both primed and naïve-like NWR iPSCs are fundamental for in future PGC-specification in order to rescue the species from extinction using cryopreserved somatic cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/genética , Femenino , Células Germinativas/metabolismo , Estratos Germinativos , Ratones , Perisodáctilos/genética
16.
iScience ; 25(1): 103556, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988400

RESUMEN

The segregation of definitive endoderm (DE) from bipotent mesendoderm progenitors leads to the formation of two distinct germ layers. Dissecting DE commitment and onset has been challenging as it occurs within a narrow spatiotemporal window in the embryo. Here, we employ a dual Bra/Sox17 reporter cell line to study DE onset dynamics. We find Sox17 expression initiates in vivo in isolated cells within a temporally restricted window. In 2D and 3D in vitro models, DE cells emerge from mesendoderm progenitors at a temporally regular, but spatially stochastic pattern, which is subsequently arranged by self-sorting of Sox17 + cells. A subpopulation of Bra-high cells commits to a Sox17+ fate independent of external Wnt signal. Self-sorting coincides with upregulation of E-cadherin but is not necessary for DE differentiation or proliferation. Our in vivo and in vitro results highlight basic rules governing DE onset and patterning through the commonalities and differences between these systems.

17.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822716

RESUMEN

The node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet. We have generated a series of deletion alleles by CRISPR/Cas9 genome editing in mESCs, and analyzed their effects in mutant mouse embryos. We identified a 37 kb region upstream of T that is essential for notochord function and tailbud outgrowth. Within that region, we discovered a T-binding enhancer required for notochord cell specification and differentiation. Our data reveal a complex regulatory landscape controlling cell type-specific expression and function of T in NMP/nascent mesoderm and node/notochord, allowing proper trunk and tail development.


Asunto(s)
Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Proteínas Fetales/genética , Proteínas de Dominio T Box/genética , Cola (estructura animal)/crecimiento & desarrollo , Secuencia de Aminoácidos/genética , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Notocorda/crecimiento & desarrollo , Notocorda/metabolismo , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cola (estructura animal)/metabolismo
18.
Nat Struct Mol Biol ; 28(7): 594-603, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140676

RESUMEN

DNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Desarrollo Embrionario/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Técnicas de Inactivación de Genes , Genoma/genética , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuenciación Completa del Genoma , ADN Metiltransferasa 3B
19.
Nature ; 592(7852): 93-98, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33568816

RESUMEN

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Asunto(s)
Extremidades , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , ARN Largo no Codificante/genética , Eliminación de Secuencia/genética , Transcripción Genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos
20.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402532

RESUMEN

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Asunto(s)
Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Hipocampo/metabolismo , Discapacidad Intelectual/genética , Manosiltransferasas/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Fenotipo , Ingeniería de Proteínas/métodos , Convulsiones/genética , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA