Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cells ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474424

RESUMEN

Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.


Asunto(s)
Neoplasias de la Mama , Campos Electromagnéticos , Serina Peptidasa A1 que Requiere Temperaturas Altas , Secretoma , Animales , Ratones , Medios de Cultivo Condicionados , Fibras Musculares Esqueléticas , Secretoma/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia
2.
Bioengineering (Basel) ; 10(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37627841

RESUMEN

Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive response to physical activity, representing improvements in energy production for de novo biosynthesis or metabolic efficiency. Differences in muscle performance are manifestations of the expression of distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful contractures require immediate energy production from carbohydrates outside the mitochondria that exhaust rapidly. Sustained muscle contractions require aerobic energy production from fatty acids by the mitochondria that is slower and produces less force. These two patterns of muscle force generation are broadly classified as glycolytic or oxidative, respectively, and require disparate levels of increased contractile or mitochondrial protein production, respectively, to be effectively executed. Glycolytic muscle, hence, tends towards fibre hypertrophy, whereas oxidative fibres are more disposed towards increased mitochondrial content and efficiency, rather than hypertrophy. Although developmentally predetermined muscle classes exist, a degree of functional plasticity persists across all muscles post-birth that can be modulated by exercise and generally results in an increase in the oxidative character of muscle. Oxidative muscle is most strongly correlated with organismal metabolic balance and longevity because of the propensity of oxidative muscle for fatty-acid oxidation and associated anti-inflammatory ramifications which occur at the expense of glycolytic-muscle development and hypertrophy. This muscle-class size disparity is often at odds with common expectations that muscle mass should scale positively with improved health and longevity. Brief magnetic-field activation of the muscle mitochondrial pool has been shown to recapitulate key aspects of the oxidative-muscle phenotype with similar metabolic hallmarks. This review discusses the common genetic cascades invoked by endurance exercise and magnetic-field therapy and the potential physiological differences with regards to human health and longevity. Future human studies examining the physiological consequences of magnetic-field therapy are warranted.

3.
Biomaterials ; 287: 121658, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841726

RESUMEN

Pulsing electromagnetic fields (PEMFs) have been shown to promote in vitro and in vivo myogeneses via mitohormetic survival adaptations of which secretome activation is a key component. A single 10-min exposure of donor myoblast cultures to 1.5 mT amplitude PEMFs produced a conditioned media (pCM) capable of enhancing the myogenesis of recipient cultures to a similar degree as direct magnetic exposure. Downwardly-directed magnetic fields produced greater secretome responses than upwardly-directed fields in adherent and fluid-suspended myoblasts. The suspension paradigm allowed for the rapid concentrating of secreted factors, particularly of extracellular vesicles. The brief conditioning of basal media from magnetically-stimulated myoblasts was capable of conferring myoblast survival to a greater degree than basal media supplemented with fetal bovine serum (5%). Downward-directed magnetic fields, applied directly to cells or in the form of pCM, upregulated the protein expression of TRPC channels, markers for cell cycle progression and myogenesis. Direct magnetic exposure produced mild oxidative stress, whereas pCM provision did not, providing a survival advantage on recipient cells. Streptomycin, a TRP channel antagonist, precluded the production of a myogenic pCM. We present a methodology employing a brief and non-invasive PEMF-exposure paradigm to effectively stimulate secretome production and release for commercial or clinical exploitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA