Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cancer Rep (Hoboken) ; 7(7): e2138, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041608

RESUMEN

BACKGROUND: N7-methylguanosine (m7G) modification is one of the most prevalent RNA modifications in humans. Dysregulated m7G modifications caused by aberrant expression of m7G writers contribute to cancer progression and result in worse patient survival in several human cancers. However, studies that systematically assess the frequency and clinical relevance of aberrant m7G writer expression in a pan-cancer cohort remain to be performed. AIMS: This study aims to systematically investigate the molecular alteration and clinical relevance of m7G methyltransferase in human cancers. METHODS: We analysed genome, transcriptome and clinical data from the Cancer Genome Atlas Research Network spanning 33 types of human cancers for aberrant changes in genes encoding m7G writers. RESULT: We demonstrate that m7G writers are dysregulated in human cancers and are associated predominantly with poorer survival. By dividing patients into those with high and low m7G scores, we show that a lower m7G score is generally associated with immune infiltration and better response to immunotherapy. CONCLUSION: Our analyses indicate the genetic alterations, expression patterns and clinical relevance of m7G writers across various cancers. This study provides insights into the potential utility of m7G writer expression as a cancer biomarker and proposes the possibility of targeting m7G writers for cancer therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/inmunología , Neoplasias/patología , Guanosina/análogos & derivados , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pronóstico , Transcriptoma , Inmunoterapia/métodos
2.
Curr Opin Genet Dev ; 87: 102211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838495

RESUMEN

N6-methyladenosine (m6A) is the most abundant modification to mRNAs. Loss-of-function studies of main m6A regulators have indicated the role of m6A in pre-mRNA splicing. Recent studies have reported the role of splicing in preventing m6A deposition. Understanding the interplay between m6A and mRNA splicing holds the potential to clarify the significance of these fundamental molecular mechanisms in cell development and function, thereby shedding light on their involvement in the pathogenesis of myriad diseases.


Asunto(s)
Adenosina , Empalme del ARN , ARN Mensajero , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Empalme del ARN/genética , Metilación , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Animales , Metilación de ARN
3.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780787

RESUMEN

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Asunto(s)
Diferenciación Celular , Macrófagos , Monocitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Diferenciación Celular/genética , Humanos , Monocitos/metabolismo , Monocitos/citología , Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polaridad Celular/genética , ARN/genética , ARN/metabolismo , Adenosina/metabolismo
4.
Cancer Med ; 13(7): e6989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545841

RESUMEN

The N6-methyladenosine (m6A) RNA modification has gained significant prominence as a new layer of regulatory mechanism that governs gene expression. Over the past decade, various m6A regulators responsible for introducing, eliminating, and recognising RNA methylation have been identified. Notably, these m6A regulators often exhibit altered expression patterns in cancer, occasionally offering prognostic value. Nonetheless, the complex roles of these regulators in human cancer pathology remain enigmatic, with conflicting outcomes reported in different studies.In recent years, a multitude of inhibitors and activators targeting m6A regulators have been reported. Several of these compounds have demonstrated promising efficacy in both in vitro and in vivo cancer models. These findings collectively underscore the dynamic landscape of m6A regulation in cancer biology, revealing its potential as a therapeutic target and prognostic indicator.


Asunto(s)
Adenosina , Neoplasias , Humanos , Adenosina/uso terapéutico , Metilación de ARN , ARN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
Sci Data ; 11(1): 252, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418823

RESUMEN

RNA modifications have emerged as central regulators of gene expression programs. Amongst RNA modifications are N6-methyladenosine (m6A) and RNA 5-hydroxymethylcytosine (5hmC). While m6A is established as a versatile regulator of RNA metabolism, the functions of RNA 5hmC are unclear. Despite some evidence linking RNA modifications to immunity, their implications in gene expression control in macrophage development and functions remain unclear. Here we present a multi-omics dataset capturing different layers of the gene expression programs driving macrophage differentiation and polarisation. We obtained mRNA-Seq, m6A-IP-Seq, 5hmC-IP-Seq, Polyribo-Seq and LC-MS/MS data from monocytes and resting-, pro- and anti-inflammatory-like macrophages. We present technical validation showing high quality and correlation between samples for all datasets, and evidence of biological consistency of modelled macrophages at the transcriptomic, epitranscriptomic, translational and proteomic levels. This multi-omics dataset provides a resource for the study of RNA m6A and 5hmC in the context of macrophage biology and spans the gene expression process from transcripts to proteins.


Asunto(s)
Macrófagos , Multiómica , ARN , Humanos , Cromatografía Liquida , Macrófagos/citología , ARN/metabolismo , Espectrometría de Masas en Tándem , Diferenciación Celular , Polaridad Celular
6.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307625

RESUMEN

Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.


Asunto(s)
Quimiocina CXCL12 , MicroARNs , Infecciones por Mycobacterium no Tuberculosas , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas de Pez Cebra , Animales , Granuloma/genética , Macrófagos , MicroARNs/genética , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Pez Cebra , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Quimiocina CXCL12/metabolismo , Proteínas de Pez Cebra/metabolismo
7.
Sci Adv ; 10(4): eadh3409, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277448

RESUMEN

The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.


Asunto(s)
Neoplasias , Transducción de Señal , Animales , Humanos , Ratones , Proliferación Celular , ADN , Sistema de Señalización de MAP Quinasas , Neoplasias/genética
8.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38152981

RESUMEN

Alternative splicing (AS) is a crucial mechanism for regulating gene expression and isoform diversity in eukaryotes. However, the analysis and visualization of AS events from RNA sequencing data remains challenging. Most tools require a certain level of computer literacy and the available means of visualizing AS events, such as coverage and sashimi plots, have limitations and can be misleading. To address these issues, we present SpliceWiz, an R package with an interactive Shiny interface that allows easy and efficient AS analysis and visualization at scale. A novel normalization algorithm is implemented to aggregate splicing levels within sample groups, thereby allowing group differences in splicing levels to be accurately visualized. The tool also offers downstream gene ontology enrichment analysis, highlighting ASEs belonging to functional pathways of interest. SpliceWiz is optimized for speed and efficiency and introduces a new file format for coverage data storage that is more efficient than BigWig. Alignment files are processed orders of magnitude faster than other R-based AS analysis tools and on par with command-line tools. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization. SpliceWiz is a Bioconductor package and is also available on GitHub (https://github.com/alexchwong/SpliceWiz).


Asunto(s)
Empalme Alternativo , Programas Informáticos , Empalme del ARN , Análisis de Secuencia de ARN , Algoritmos
10.
FASEB J ; 37(7): e23009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37273180

RESUMEN

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Asunto(s)
Neoplasias del Colon , Ácido Linoleico , Humanos , Ratones , Animales , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Eicosanoides , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta , Neoplasias del Colon/etiología
11.
Cell Mol Life Sci ; 80(6): 157, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208522

RESUMEN

Virilizer-like m6A methyltransferase-associated protein (VIRMA) maintains the stability of the m6A writer complex. Although VIRMA is critical for RNA m6A deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers. Of the two known VIRMA isoforms, the nuclear-enriched full-length but not the cytoplasmic-localised N-terminal VIRMA promotes m6A-dependent breast tumourigenesis in vitro and in vivo. Mechanistically, we reveal that VIRMA overexpression upregulates the m6A-modified long non-coding RNA, NEAT1, which contributes to breast cancer cell growth. We also show that VIRMA overexpression enriches m6A on transcripts that regulate the unfolded protein response (UPR) pathway but does not promote their translation to activate the UPR under optimal growth conditions. Under stressful conditions that are often present in tumour microenvironments, VIRMA-overexpressing cells display enhanced UPR and increased susceptibility to death. Our study identifies oncogenic VIRMA overexpression as a vulnerability that may be exploited for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Respuesta de Proteína Desplegada/genética , ARN/metabolismo , Interferencia de ARN , Microambiente Tumoral
12.
Gynecol Oncol ; 171: 129-140, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36893489

RESUMEN

OBJECTIVE: Universal screening of endometrial carcinoma (EC) for mismatch repair deficiency (MMRd) and Lynch syndrome uses presence of MLH1 methylation to omit common sporadic cases from follow-up germline testing. However, this overlooks rare cases with high-risk constitutional MLH1 methylation (epimutation), a poorly-recognized mechanism that predisposes to Lynch-type cancers with MLH1 methylation. We aimed to determine the role and frequency of constitutional MLH1 methylation among EC cases with MMRd, MLH1-methylated tumors. METHODS: We screened blood for constitutional MLH1 methylation using pyrosequencing and real-time methylation-specific PCR in patients with MMRd, MLH1-methylated EC ascertained from (i) cancer clinics (n = 4, <60 years), and (ii) two population-based cohorts; "Columbus-area" (n = 68, all ages) and "Ohio Colorectal Cancer Prevention Initiative (OCCPI)" (n = 24, <60 years). RESULTS: Constitutional MLH1 methylation was identified in three out of four patients diagnosed between 36 and 59 years from cancer clinics. Two had mono-/hemiallelic epimutation (∼50% alleles methylated). One with multiple primaries had low-level mosaicism in normal tissues and somatic "second-hits" affecting the unmethylated allele in all tumors, demonstrating causation. In the population-based cohorts, all 68 cases from the Columbus-area cohort were negative and low-level mosaic constitutional MLH1 methylation was identified in one patient aged 36 years out of 24 from the OCCPI cohort, representing one of six (∼17%) patients <50 years and one of 45 patients (∼2%) <60 years in the combined cohorts. EC was the first/dual-first cancer in three patients with underlying constitutional MLH1 methylation. CONCLUSIONS: A correct diagnosis at first presentation of cancer is important as it will significantly alter clinical management. Screening for constitutional MLH1 methylation is warranted in patients with early-onset EC or synchronous/metachronous tumors (any age) displaying MLH1 methylation.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Endometriales , Humanos , Femenino , Persona de Mediana Edad , Metilación de ADN , Linaje , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Colorrectales/genética , Neoplasias Endometriales/genética , Homólogo 1 de la Proteína MutL/genética , Reparación de la Incompatibilidad de ADN
13.
Aging Cell ; 22(1): e13755, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495001

RESUMEN

The aged brain is associated with an inevitable decline in cognitive function and increased vulnerability to neurodegenerative disorders. Multiple molecular hallmarks have been associated with the aging nervous system through transcriptomics and proteomic studies. Recently, epitranscriptomic analysis has highlighted the role of RNA chemical modification in various biological processes. In particular, N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNAs, has been functionally linked to multiple aspects of RNA metabolism with the roles of m6A in processes such as learning and memory, leading to our current investigation of how the m6A-transcriptomic landscape is shaped during aging. Using the inbred C57BL/6 line, we compared the m6A-transcriptomic profiles from the hippocampi of young (3-month-old) and aged (20-month-old) mice. Methylated RNA immunoprecipitation (MeRIP)-sequencing analysis revealed hyper- and hypomethylation in 426 and 102 genes, respectively, in the aged hippocampus (fold change >1.5, false discovery rate <0.05). By correlating the methylation changes to their steady-state transcript levels in the RNA-Seq data, we found a significant concordance between m6A and transcript levels in both directions. Notably, the myelin regulator gene Gpr17 was downregulated in the aged hippocampus concomitant with reduced m6A levels in its 3'UTR. Using reporter constructs and mutagenesis analysis, we demonstrated that the putative m6A sites in the 3'UTR of Gpr17 are important for mRNA translation but not for regulating transcript stability. Overall, the positive correlation between m6A and the transcript expression levels indicates a co-transcriptional regulation of m6A with gene expression changes that occur in the aged mouse hippocampus.


Asunto(s)
Proteómica , ARN , Ratones , Animales , ARN/genética , Regiones no Traducidas 3' , Ratones Endogámicos C57BL , Metilación de ADN , Hipocampo , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética
14.
Breast Cancer Res ; 24(1): 100, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581993

RESUMEN

BACKGROUND: After many years of neglect in the field of alternative splicing, the importance of intron retention (IR) in cancer has come into focus following landmark discoveries of aberrant IR patterns in cancer. Many solid and liquid tumours are associated with drastic increases in IR, and such patterns have been pursued as both biomarkers and therapeutic targets. Paradoxically, breast cancer (BrCa) is the only tumour type in which IR is reduced compared to adjacent normal breast tissue. METHODS: In this study, we have conducted a pan-cancer analysis of IR with emphasis on BrCa and its subtypes. We explored mechanisms that could cause aberrant and pathological IR and clarified why normal breast tissue has unusually high IR. RESULTS: Strikingly, we found that aberrantly decreasing IR in BrCa can be largely attributed to normal breast tissue having the highest occurrence of IR events compared to other healthy tissues. Our analyses suggest that low numbers of IR events in breast tumours are associated with poor prognosis, particularly in the luminal B subtype. Interestingly, we found that IR frequencies negatively correlate with cell proliferation in BrCa cells, i.e. rapidly dividing tumour cells have the lowest number of IR events. Aberrant RNA-binding protein expression and changes in tissue composition are among the causes of aberrantly decreasing IR in BrCa. CONCLUSIONS: Our results suggest that IR should be considered for therapeutic manipulation in BrCa patients with aberrantly low IR levels and that further work is needed to understand the cause and impact of high IR in other tumour types.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Intrones/genética , Mama/patología , Proliferación Celular
15.
Nucleic Acids Res ; 50(20): 11563-11579, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36354002

RESUMEN

Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.


Asunto(s)
Diferenciación Celular , Cromatina , Intrones , Humanos , Cromatina/genética , Intrones/genética , Nucleosomas/genética , ARN Mensajero
16.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35545295

RESUMEN

Pathogenic mycobacteria inhibit inflammasome activation to establish infection. Although it is known that potassium efflux is a trigger for inflammasome activation, the interaction between mycobacterial infection, potassium efflux, and inflammasome activation has not been investigated. Here, we use Mycobacterium marinum infection of zebrafish embryos and Mycobacterium tuberculosis infection of THP-1 cells to demonstrate that pathogenic mycobacteria up-regulate the host WNK signalling pathway kinases SPAK and OXSR1 which control intracellular potassium balance. We show that genetic depletion or inhibition of OXSR1 decreases bacterial burden and intracellular potassium levels. The protective effects of OXSR1 depletion are at least partially mediated by NLRP3 inflammasome activation, caspase-mediated release of IL-1ß, and downstream activation of protective TNF-α. The elucidation of this druggable pathway to potentiate inflammasome activation provides a new avenue for the development of host-directed therapies against intracellular infections.


Asunto(s)
Inflamasomas , Mycobacterium , Animales , Inflamasomas/metabolismo , Mycobacterium/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Transducción de Señal , Pez Cebra
17.
Trends Genet ; 38(8): 789-792, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466008

RESUMEN

Recent landmark discoveries have underpinned the physiological importance of intron retention (IR) across multiple domains of life and revealed an unexpected breath of functions in a large variety of biological processes. Despite significant progress in the field, some challenges remain. Once solved, opportunities will arise for discovering more functions of IR.


Asunto(s)
Empalme Alternativo , Fenómenos Biológicos , Intrones/genética
18.
Trends Genet ; 38(4): 325-332, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34920906

RESUMEN

N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.


Asunto(s)
Adenosina , Núcleo Celular , Transporte Activo de Núcleo Celular/genética , Adenosina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Semin Cell Dev Biol ; 125: 110-121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34053866

RESUMEN

Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.


Asunto(s)
Aprendizaje , Plasticidad Neuronal , Encéfalo/fisiología , Humanos , Plasticidad Neuronal/genética , Neuronas/metabolismo , ARN/metabolismo
20.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638554

RESUMEN

Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to 'switch' between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.


Asunto(s)
Empalme Alternativo/fisiología , Plasticidad de la Célula/genética , Músculo Liso Vascular/metabolismo , Empalme Alternativo/efectos de los fármacos , Animales , Aterosclerosis/etiología , Aterosclerosis/genética , Reestenosis Coronaria/etiología , Reestenosis Coronaria/genética , Humanos , Músculo Liso Vascular/citología , Oligonucleótidos Antisentido/uso terapéutico , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA