Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cancer Discov ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137067

RESUMEN

Cancer-associated fibroblasts (CAFs) and nerves, components of the tumor microenvironment, have each been shown to directly promote gastrointestinal cancers. However, it remains unknown whether these cells interact with each other to regulate cancer progression. We found that in colorectal cancer (CRC) norepinephrine induces ADRB2-dependent nerve growth factor (NGF) secretion from CAFs, which in turn increases intra-tumor sympathetic innervation and norepinephrine accumulation. Adrenergic stimulation accelerates CRC growth through ADRA2A/Gi-mediated activation of Yes-Associated Protein (YAP). NGF from CAFs directly enhances CRC cell growth via the PI3K/AKT pathway. Treatment with a tropomyosin receptor kinase (Trk) inhibitor decreased YAP and AKT activation and CRC progression in mice. In human CRC, high NGF expression is associated with the mesenchymal-like tumor subtype and poor patient survival. These findings suggest a central role for reciprocal CAF-nerve crosstalk in promoting CRC progression. Blocking this feedforward loop with a Trk inhibitor may represent a potential therapeutic approach for CRC.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39002022

RESUMEN

PURPOSE: Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS: The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION: Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.

3.
Gastroenterology ; 167(3): 505-521.e19, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38583723

RESUMEN

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.


Asunto(s)
Ratones Noqueados , Mucina 6 , Neoplasias Gástricas , Animales , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Glicosilación , Humanos , Mucina 6/metabolismo , Mucina 6/genética , Ratones , Línea Celular Tumoral , Carcinogénesis/metabolismo , Carcinogénesis/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Factor Trefoil-1/metabolismo , Factor Trefoil-1/genética , Organoides/metabolismo , Aparato de Golgi/metabolismo , Mucinas Gástricas/metabolismo , Modelos Animales de Enfermedad
4.
J Med Ext Real ; 1(1): 4-12, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38505474

RESUMEN

Medical extended reality (MXR) has emerged as a dynamic field at the intersection of health care and immersive technology, encompassing virtual, augmented, and mixed reality applications across a wide range of medical disciplines. Despite its rapid growth and recognition by regulatory bodies, the field lacks a standardized taxonomy to categorize its diverse research and applications. This American Medical Extended Reality Association guideline, authored by the editorial board of the Journal of Medical Extended Reality, introduces a comprehensive taxonomy for MXR, developed through a multidisciplinary and international collaboration of experts. The guideline seeks to standardize terminology, categorize existing work, and provide a structured framework for future research and development in MXR. An international and multidisciplinary panel of experts was convened, selected based on publication track record, contributions to MXR, and other objective measures. Through an iterative process, the panel identified primary and secondary topics in MXR. These topics were refined over several rounds of review, leading to the final taxonomy. The taxonomy comprises 13 primary topics that jointly expand into 180 secondary topics, demonstrating the field's breadth and depth. At the core of the taxonomy are five overarching domains: (1) technological integration and innovation; (2) design, development, and deployment; (3) clinical and therapeutic applications; (4) education, training, and communication; and (5) ethical, regulatory, and socioeconomic considerations. The developed taxonomy offers a framework for categorizing the diverse research and applications within MXR. It may serve as a foundational tool for researchers, clinicians, funders, academic publishers, and regulators, facilitating clearer communication and categorization in this rapidly evolving field. As MXR continues to grow, this taxonomy will be instrumental in guiding its development and ensuring a cohesive understanding of its multifaceted nature.

5.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245513

RESUMEN

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Animales , Humanos , Ratones , Adenoma/diagnóstico , Adenoma/terapia , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Escherichia coli/genética , Estudios Prospectivos , Salicilatos , Método Doble Ciego
6.
Cancer Immunol Immunother ; 73(1): 6, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231291

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Cytokine-induced killer (CIK) cells are an adoptive immunotherapy reported to have strong anti-tumour activity across a range of cancers. They are a heterogeneous mix of lymphoid cells generated by culturing human peripheral blood mononuclear cells with cytokines and monoclonal antibodies in vitro. In this study, we investigated the yield and function of CIK cells generated from patients with CRC liver metastases. We first showed that CIK cells generated in serum free medium X-VIVO 15 were comparable to those from RPMI medium with 10% FBS in terms of the number and percentages of the main subsets of cells in the CIK culture, and the intracellular levels of granzyme B and perforin, and the pro-inflammatory cytokines IL-2, IFN-γ and TNF-α. The CIK cells were cytotoxic to CRC cell lines grown in 2D cultures or as spheroids, and against autologous patient-derived tumour organoids. Donor attributes such as age, sex, or prior chemotherapy exposure had no significant impact on CIK cell numbers or function. These results suggest that functional CIK cells can be generated from patients with CRC liver metastatic disease, and support further investigations into the therapeutic application of autologous CIK cells in the management of patients with CRC liver metastases.


Asunto(s)
Neoplasias Colorrectales , Células Asesinas Inducidas por Citocinas , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Anticuerpos Monoclonales , Citocinas , Neoplasias Colorrectales/terapia
7.
J Particip Med ; 15: e54527, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085561

RESUMEN

The Journal of Participatory Medicine introduces Extraordinary Lives, a new journal section celebrating the voices and work of steadfast advocates of participatory medicine that we have lost. This inaugural essay spotlights Casey Quinlan, a patient activist who effectively used her humor and incisive analysis of health care to encourage others to strive for meaningful change. A first-generation "professional patient," Casey served as a role model who inspired many to share their stories and achieve genuine partnerships in care delivery. A maker of "good trouble," her voice and stance were part of her power and influence in disrupting the status quo. We present her fight for personal access to health data, her aspiration for personally customized evidence, and her drive for all people to control their health and their health care.

8.
Nat Commun ; 14(1): 6909, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907525

RESUMEN

Osteoarthritis (OA) is characterised by an irreversible degeneration of articular cartilage. Here we show that the BMP-antagonist Gremlin 1 (Grem1) marks a bipotent chondrogenic and osteogenic progenitor cell population within the articular surface. Notably, these progenitors are depleted by injury-induced OA and increasing age. OA is also caused by ablation of Grem1 cells in mice. Transcriptomic and functional analysis in mice found that articular surface Grem1-lineage cells are dependent on Foxo1 and ablation of Foxo1 in Grem1-lineage cells caused OA. FGFR3 signalling was confirmed as a promising therapeutic pathway by administration of pathway activator, FGF18, resulting in Grem1-lineage chondrocyte progenitor cell proliferation, increased cartilage thickness and reduced OA. These findings suggest that OA, in part, is caused by mechanical, developmental or age-related attrition of Grem1 expressing articular cartilage progenitor cells. These cells, and the FGFR3 signalling pathway that sustains them, may be effective future targets for biological management of OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Osteoartritis/genética , Osteoartritis/metabolismo , Células Madre/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Osteogénesis , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
9.
Science ; 381(6658): 682-686, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561843

RESUMEN

Synthetic biology has developed sophisticated cellular biosensors to detect and respond to human disease. However, biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi to detect donor DNA from the genomes of colorectal cancer (CRC) cells, organoids, and tumors. We characterized the functionality of the biosensors in vitro with coculture assays and then validated them in vivo with sensor bacteria delivered to mice harboring colorectal tumors. We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of CRC. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA.


Asunto(s)
Acinetobacter , Técnicas Biosensibles , Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , ADN de Neoplasias , Animales , Humanos , Ratones , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , ADN de Neoplasias/análisis , Mutación , Acinetobacter/genética , Ácidos Nucleicos Libres de Células/análisis , Bioingeniería
10.
Br J Cancer ; 129(9): 1442-1450, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563222

RESUMEN

Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Animales , Ratones , Humanos , Investigación Biomédica Traslacional , Oncología Médica , Inestabilidad de Microsatélites , Reparación de la Incompatibilidad de ADN
11.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066243

RESUMEN

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool. We also demonstrate specific colonization of EcN to solitary neoplastic lesions in an orthotopic murine model of CRC. We then exploit this neoplasia-homing property of EcN to develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate, and demonstrate that oral delivery of this strain results in significantly increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. We also assess EcN engineered to locally release immunotherapeutics at the neoplastic site. Oral delivery to mice bearing adenomas, reduced adenoma burden by ∻50%, with notable differences in the spatial distribution of T cell populations within diseased and healthy intestinal tissue, suggesting local induction of robust anti-tumor immunity. Together, these results support the use of EcN as an orally-delivered platform to detect disease and treat CRC through its production of screening and therapeutic molecules.

12.
bioRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034712

RESUMEN

Osteoarthritis (OA), which carries an enormous disease burden across the world, is characterised by irreversible degeneration of articular cartilage (AC), and subsequently bone. The cellular cause of OA is unknown. Here, using lineage tracing in mice, we show that the BMP-antagonist Gremlin 1 (Grem1) marks a novel chondrogenic progenitor (CP) cell population in the articular surface that generates joint cartilage and subchondral bone during development and adulthood. Notably, this CP population is depleted in injury-induced OA, and with age. OA is also induced by toxin-mediated ablation of Grem1 CP cells in young mice. Transcriptomic analysis and functional modelling in mice revealed articular surface Grem1-lineage cells are dependent on Foxo1; ablation of Foxo1 in Grem1-lineage cells led to early OA. This analysis identified FGFR3 signalling as a therapeutic target, and injection of its activator, FGF18, caused proliferation of Grem1-lineage CP cells, increased cartilage thickness, and reduced OA pathology. We propose that OA arises from the loss of CP cells at the articular surface secondary to an imbalance in progenitor cell homeostasis and present a new progenitor population as a locus for OA therapy.

13.
Arch Pathol Lab Med ; 147(12): 1446-1450, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800547

RESUMEN

CONTEXT.­: Mesothelioma of the tunica vaginalis testis (TVT) is an extremely rare form of mesothelioma. OBJECTIVE.­: To compare the clinical and molecular characteristics of mesothelioma of the TVT with those of mesothelioma at other more common sites, including the relationship with exposure to asbestos. DESIGN.­: We present clinical and pathological data for 9 cases of primary TVT mesothelioma. We performed whole-genome sequencing on 3 cases for the first time. RESULTS.­: The majority (7 of 9 cases) of TVT mesotheliomas were epithelioid, with the remaining 2 cases showing biphasic morphology. Morphology and immunohistochemical profiles were indistinguishable from mesothelioma elsewhere. Asbestos exposure was documented for 7 of the 9 cases, with no information for 2 cases. The 3 TVT mesothelioma cases that underwent whole-genome sequencing displayed a mutational profile similar to that of mesothelioma at other sites, including NF2 and TP53 mutations. CONCLUSIONS.­: The clinical and molecular profile of TVT mesothelioma is similar to that of mesothelioma elsewhere.


Asunto(s)
Amianto , Mesotelioma Maligno , Mesotelioma , Neoplasias Testiculares , Masculino , Humanos , Amianto/efectos adversos , Mesotelioma/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología
14.
Gastro Hep Adv ; 2(5): 684-700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39129877

RESUMEN

Background and Aims: Although Helicobacter pylori is the most important bacterial carcinogen in gastric cancer (GC), GC can emerge even after H. pylori eradication. Studies suggest that various constituents of the gastric microbiome may influence GC development, but the role of individual pathogens is unclear. Methods: Human gastric mucosal samples were analyzed by 16SrRNA sequencing to investigate microbiome composition and its association with clinical parameters, including GC risk. Identified bacteria in the stomach were cocultured with gastric epithelial cells or inoculated into mice, and transcriptomic changes, DNA damage, and inflammation were analyzed. Bacterial reads in GC tissues were examined together with transcriptomic and genetic sequencing data in the cancer genome atlas dataset. Results: Patients after Helicobacter pylori eradication formed 3 subgroups based on the microbial composition revealed by 16SrRNA sequencing. One dysbiotic group enriched with Fusobacterium and Neisseria species was associated with a significantly higher GC incidence. These species activated prooncogenic pathways in gastric epithelial cells and promoted inflammation in mouse stomachs. Sugar chains that constitute gastric mucin attenuate host-bacteria interactions. Metabolites from Fusobacterium species were genotoxic, and the presence of the bacteria was associated with an inflammatory signature and a higher tumor mutation burden. Conclusion: Gastric microbiota in the dysbiotic stomach is associated with GC development after H. pylori eradication and plays a pathogenic role through direct host-bacteria interaction.

15.
BMC Cancer ; 22(1): 222, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232427

RESUMEN

BACKGROUND: Rectal Cancer is a common malignancy. The current treatment approach for patients with locally advanced rectal cancer involves neoadjuvant chemoradiotherapy followed by surgical resection of the rectum. The resection can lead to complications and long-term consequences. A clinical complete response is observed in some patients after chemoradiotherapy. A number of recent studies have shown that patients can be observed safely after completing chemoradiotherapy (without surgery), provided clinical complete response has been achieved. In this approach, resection is reserved for cases of regrowth. This is called the watch and wait approach. This approach potentially avoids unnecessary surgical resection of the rectum and the resulting complications. In this study, we will prospectively investigate this approach. METHODS: Adult patients with a diagnosis of rectal cancer planned to receive neoadjuvant long course chemoradiotherapy (± subsequent combination chemotherapy) will be consented into the study prior to commencing treatment. After completing the chemoradiotherapy (± subsequent combination chemotherapy), based on the clinical response, subjects will be allocated to one of the following arms: subjects who achieved a clinical complete response will be allocated to the watch and wait arm and others to the standard management arm (which includes resection). The aim of the study is to determine the rate of local failure and other safety and efficacy outcomes in the watch and wait arm. Patient reported outcome measures and the use of biomarkers as part of the clinical monitoring will be studied in both arms of the study. DISCUSSION: This study will prospectively investigate the safety of the watch and wait approach. We will investigate predictive biomarkers (molecular biomarkers and imaging biomarkers) and patient reported outcome measures in the study population and the cost effectiveness of the watch and wait approach. This study will also help evaluate a defined monitoring schedule for patients managed with the watch and wait approach. This protocol covers the first two years of follow up, we are planning a subsequent study which covers year 3-5 follow up for the study population. TRIAL REGISTRATION: Name of the registry: Australia and New Zealand Clinical Trials Registry (ANZCTR). TRIAL REGISTRATION NUMBER: Trial ID: ACTRN12619000207112 Registered 13 February 2019, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376810.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto/terapia , Espera Vigilante/métodos , Adulto , Biomarcadores de Tumor/análisis , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Neoplasias del Recto/mortalidad , Tasa de Supervivencia , Resultado del Tratamiento
16.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35205791

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Perhexiline, a prophylactic anti-anginal drug, has been reported to have anti-tumour effects both in vitro and in vivo. Perhexiline as used clinically is a 50:50 racemic mixture ((R)-P) of (-) and (+) enantiomers. It is not known if the enantiomers differ in terms of their effects on cancer. In this study, we examined the cytotoxic capacity of perhexiline and its enantiomers ((-)-P and (+)-P) on CRC cell lines, grown as monolayers or spheroids, and patient-derived organoids. Treatment of CRC cell lines with (R)-P, (-)-P or (+)-P reduced cell viability, with IC50 values of ~4 µM. Treatment was associated with an increase in annexin V staining and caspase 3/7 activation, indicating apoptosis induction. Caspase 3/7 activation and loss of structural integrity were also observed in CRC cell lines grown as spheroids. Drug treatment at clinically relevant concentrations significantly reduced the viability of patient-derived CRC organoids. Given these in vitro findings, perhexiline, as a racemic mixture or its enantiomers, warrants further investigation as a repurposed drug for use in the management of CRC.

17.
Gastroenterology ; 162(3): 890-906, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34883119

RESUMEN

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/fisiología , Carcinogénesis/patología , Linaje de la Célula , Neoplasias Colorrectales/patología , Células Madre Mesenquimatosas/fisiología , Actinas/genética , Actinas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Diferenciación Celular , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/patología , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Organoides/patología , Organoides/fisiología , Pronóstico , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Análisis de Secuencia de ARN , Tasa de Supervivencia , Microambiente Tumoral
18.
J Vis Exp ; (175)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542536

RESUMEN

Hepatic metastasis of colorectal cancer (CRC) is a leading cause of cancer-related death. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play a crucial role in metastatic CRC progression and predict poor patient prognosis. However, there is a lack of satisfactory mouse models to study the crosstalk between metastatic cancer cells and CAFs. Here, we present a method to investigate how liver metastasis progression is regulated by the metastatic niche and possibly could be restrained by stroma-directed therapy. Portal vein injection of CRC organoids generated a desmoplastic reaction, which faithfully recapitulated the fibroblast-rich histology of human CRC liver metastases. This model was tissue-specific with a higher tumor burden in the liver when compared to an intra-splenic injection model, simplifying mouse survival analyses. By injecting luciferase-expressing tumor organoids, tumor growth kinetics could be monitored by in vivo imaging. Moreover, this preclinical model provides a useful platform to assess the efficacy of therapeutics targeting the tumor mesenchyme. We describe methods to examine whether adeno-associated virus-mediated delivery of a tumor-inhibiting stromal gene to hepatocytes could remodel the tumor microenvironment and improve mouse survival. This approach enables the development and assessment of novel therapeutic strategies to inhibit hepatic metastasis of CRC.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Organoides , Vena Porta , Microambiente Tumoral
19.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34184027

RESUMEN

Bone morphogenetic protein (BMP) signaling is required for early forebrain development and cortical formation. How the endogenous modulators of BMP signaling regulate the structural and functional maturation of the developing brain remains unclear. Here, we show that expression of the BMP antagonist Grem1 marks committed layer V and VI glutamatergic neurons in the embryonic mouse brain. Lineage tracing of Grem1-expressing cells in the embryonic brain was examined by administration of tamoxifen to pregnant Grem1creERT; Rosa26LSLTdtomato mice at 13.5 days post coitum (dpc), followed by collection of embryos later in gestation. In addition, at 14.5 dpc, bulk mRNA-seq analysis of differentially expressed transcripts between FACS-sorted Grem1-positive and -negative cells was performed. We also generated Emx1-cre-mediated Grem1 conditional knockout mice (Emx1-Cre;Grem1flox/flox) in which the Grem1 gene was deleted specifically in the dorsal telencephalon. Grem1Emx1cKO animals had reduced cortical thickness, especially layers V and VI, and impaired motor balance and fear sensitivity compared with littermate controls. This study has revealed new roles for Grem1 in the structural and functional maturation of the developing cortex.


Asunto(s)
Proteína Morfogenética Ósea 1/antagonistas & inhibidores , Encéfalo/fisiología , Miedo/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas Motoras/metabolismo , Transducción de Señal , Animales , Conducta Animal , Proteína Morfogenética Ósea 1/genética , Encéfalo/embriología , Diferenciación Celular , Proliferación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Células Madre , Transcriptoma
20.
Sci Rep ; 11(1): 7200, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785826

RESUMEN

The intestinal stroma provides an important microenvironment for immune cell activation. The perturbation of this tightly regulated process can lead to excessive inflammation. We know that upregulated Toll-like receptor 4 (TLR4) in the intestinal epithelium plays a key role in the inflammatory condition of preterm infants, such as necrotizing enterocolitis (NEC). However, the surrounding stromal contribution to excessive inflammation in the pre-term setting awaits careful dissection. Ex vivo co-culture of embryonic day 14.5 (E14.5) or adult murine intestinal stromal cells with exogenous monocytes was undertaken. We also performed mRNAseq analysis of embryonic and adult stromal cells treated with vehicle control or lipopolysaccharide (LPS), followed by pathway and network analyses of differentially regulated transcripts. Cell characteristics were compared using flow cytometry and pHrodo red phagocytic stain, candidate gene analysis was performed via siRNA knockdown and gene expression measured by qPCR and ELISA. Embryonic stromal cells promote the differentiation of co-cultured monocytes to CD11bhighCD11chigh mononuclear phagocytes, that in turn express decreased levels of CD103. Global mRNAseq analysis of stromal cells following LPS stimulation identified TLR signaling components as the most differentially expressed transcripts in the immature compared to adult setting. We show that CD14 expressed by CD11b+CD45+ embryonic stromal cells is a key inducer of TLR mediated inflammatory cytokine production and phagocytic activity of monocyte derived cells. We utilise transcriptomic analyses and functional ex vivo modelling to improve our understanding of unique molecular cues provided by the immature intestinal stroma.


Asunto(s)
Enterocolitis Necrotizante/patología , Inflamación/patología , Intestinos/patología , Monocitos/patología , Células del Estroma/patología , Animales , Células Cultivadas , Técnicas de Cocultivo , Enterocolitis Necrotizante/genética , Redes Reguladoras de Genes , Humanos , Recién Nacido , Recien Nacido Prematuro , Inflamación/genética , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Células del Estroma/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA