Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 2679, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471994

RESUMEN

The cation channel transient receptor potential vanilloid 4 (TRPV4) is one of the few identified ion channels that can directly cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here, we show that in vivo expression of a neuropathy-causing TRPV4 mutant (TRPV4R269C) causes dose-dependent neuronal dysfunction and axonal degeneration, which are rescued by genetic or pharmacological blockade of TRPV4 channel activity. TRPV4R269C triggers increased intracellular Ca2+ through a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism, and CaMKII inhibition prevents both increased intracellular Ca2+ and neurotoxicity in Drosophila and cultured primary mouse neurons. Importantly, TRPV4 activity impairs axonal mitochondrial transport, and TRPV4-mediated neurotoxicity is modulated by the Ca2+-binding mitochondrial GTPase Miro. Our data highlight an integral role for CaMKII in neuronal TRPV4-associated Ca2+ responses, the importance of tightly regulated Ca2+ dynamics for mitochondrial axonal transport, and the therapeutic promise of TRPV4 antagonists for patients with TRPV4-related neurodegenerative diseases.


Asunto(s)
Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/genética , Canales Catiónicos TRPV/genética , Animales , Animales Modificados Genéticamente , Axones/patología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/patología , Alas de Animales/crecimiento & desarrollo
2.
Curr Biol ; 28(19): 3086-3097.e4, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30245107

RESUMEN

Many nuclear positioning events involve linker of nucleoskeleton and cytoskeleton (LINC) complexes, which transmit forces generated by the cytoskeleton across the nuclear envelope. LINC complexes are formed by trans-luminal interactions between inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins, but how these interactions are regulated is poorly understood. We combine in vivo C. elegans genetics, in vitro wounded fibroblast polarization, and in silico molecular dynamics simulations to elucidate mechanisms of LINC complexes. The extension of the KASH domain by a single alanine residue or the mutation of the conserved tyrosine at -7 completely blocked the nuclear migration function of C. elegans UNC-83. Analogous mutations at -7 of mouse nesprin-2 disrupted rearward nuclear movements in NIH 3T3 cells, but did not disrupt ANC-1 in nuclear anchorage. Furthermore, conserved cysteines predicted to form a disulfide bond between SUN and KASH proteins are important for the function of certain LINC complexes, and might promote a developmental switch between nuclear migration and nuclear anchorage. Mutations of conserved cysteines in SUN or KASH disrupted ANC-1-dependent nuclear anchorage in C. elegans and Nesprin-2G-dependent nuclear movements in polarizing fibroblasts. However, the SUN cysteine mutation did not disrupt nuclear migration. Moreover, molecular dynamics simulations showed that a disulfide bond is necessary for the maximal transmission of cytoskeleton-generated forces by LINC complexes in silico. Thus, we have demonstrated functions for SUN-KASH binding interfaces, including a predicted intermolecular disulfide bond, as mechanistic determinants of nuclear positioning that may represent targets for regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Células 3T3 NIH , Matriz Nuclear/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
3.
Brain Res ; 1693(Pt A): 55-66, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29625118

RESUMEN

Mutations in the nuclear localization signal of the RNA binding protein FUS cause both Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). These mutations result in a loss of FUS from the nucleus and the formation of FUS-containing cytoplasmic aggregates in patients. To better understand the role of cytoplasmic FUS mislocalization in the pathogenesis of ALS, we identified a population of cholinergic neurons in Drosophila that recapitulate these pathologic hallmarks. Expression of mutant FUS or the Drosophila homolog, Cabeza (Caz), in class IV dendritic arborization neurons results in cytoplasmic mislocalization and axonal transport to presynaptic terminals. Interestingly, overexpression of FUS or Caz causes the progressive loss of neuronal projections, reduction of synaptic mitochondria, and the appearance of large calcium transients within the synapse. Additionally, we find that overexpression of mutant but not wild type FUS results in a reduction in presynaptic Synaptotagmin, an integral component of the neurotransmitter release machinery, and mutant Caz specifically disrupts axonal transport and induces hyperexcitability. These results suggest that FUS/Caz overexpression disrupts neuronal function through multiple mechanisms, and that ALS-causing mutations impair the transport of synaptic vesicle proteins and induce hyperexcitability.


Asunto(s)
Proteínas de Drosophila/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/fisiología , Plasticidad Neuronal/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dendritas/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Neuronas Motoras/metabolismo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/fisiología
4.
Proc Natl Acad Sci U S A ; 114(39): 10479-10484, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28894008

RESUMEN

Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.


Asunto(s)
Ancirinas/genética , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Prosencéfalo/fisiopatología , Sinapsis/patología , Animales , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/patología , Litio/farmacología , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio con Entrada de Voltaje/genética , Proteínas Proto-Oncogénicas c-fyn/biosíntesis , Ácido Valproico/farmacología , Canales de Sodio Activados por Voltaje/genética
5.
J Cell Biol ; 216(3): 657-674, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28242745

RESUMEN

The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Línea Celular , Núcleo Celular/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Mioblastos/metabolismo , Mioblastos/fisiología , Células 3T3 NIH , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA