Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15061-15069, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787332

RESUMEN

The realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (X2dhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt4)2[Co2(X2dhbq)3] as promising Kitaev-type QSL candidate materials. The high-spin d7 Co2+ has pseudospin-1/2 ground-state doublets, and benzoquinone-based linkers not only provide two separate superexchange pathways that create bond-dependent frustrated interactions but also allow for chemical tunability to mediate magnetic coupling. Our magnetization data show antiferromagnetic interactions between neighboring metal centers with Weiss constants from -5.1 to -8.5 K depending on the X functional group in X2dhbq linkers (X = Cl, Br, H). No magnetic transition or spin freezing could be observed down to 2 K. Low-temperature susceptibility (down to 0.3 K) and specific heat (down to 0.055 K) of (NEt4)2[Co2(H2dhbq)3] were further analyzed. Heat capacity measurements confirmed no long-range order down to 0.055 K, evidenced by the broad peak instead of the λ-like anomaly. Our results indicate that these 2D cobalt benzoquinone frameworks are promising Kitaev QSL candidates with chemical tunability through ligands that can vary the magnetic coupling and frustration.

2.
Adv Mater ; 36(28): e2311644, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684220

RESUMEN

Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2 thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2 layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K-1 and a corresponding thermoelectric power factor over 30 mW K-2 m-1 are observed at 5 K in a 25-nm-thick sample. Combining angle-dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first-principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum-confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures.

3.
Sci Adv ; 9(5): eadd7194, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724270

RESUMEN

This article shows experimentally that an external electric field affects the velocity of the longitudinal acoustic phonons (vLA), thermal conductivity (κ), and diffusivity (D) in a bulk lead zirconium titanate-based ferroelectric. Phonon conduction dominates κ, and the observations are due to changes in the phonon dispersion, not in the phonon scattering. This gives insight into the nature of the thermal fluctuations in ferroelectrics, namely, phonons labeled ferrons that carry heat and polarization. It also opens the way for phonon-based electrically driven all-solid-state heat switches, an enabling technology for solid-state heat engines. A quantitative theoretical model combining piezoelectric strain and phonon anharmonicity explains the field dependence of vLA, κ, and D without any adjustable parameters, thus connecting thermodynamic equilibrium properties with transport properties. The effect is four times larger than previously reported effects, which were ascribed to field-dependent scattering of phonons.

4.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096864

RESUMEN

The spin-Seebeck effect (SSE) is an advective transport process traditionally studied in bilayers composed of a ferromagnet (FM) and a non-magnetic metal (NM) with strong spin-orbit coupling. In a temperature gradient, the flux of magnons in the FM transfers spin-angular momentum to electrons in the NM, which by the inverse spin-Hall effect generates an SSE voltage. In contrast, the Nernst effect is a bulk transport phenomenon in homogeneous NMs or FMs. These effects share the same geometry, and we show here that they can be added to each other in a new combination of FM/NM composites where synthesis via in-field annealing results in the FM material (MnBi) forming aligned needles inside an NM matrix with strong spin-orbit coupling (SOC) (Bi). Through examination of the materials' microstructural, magnetic, and transport properties, we searched for signs of enhanced transverse thermopower facilitated by an SSE contribution from MnBi adding to the Nernst effect in Bi. Our results indicate that these two signals are additive in samples with lower MnBi concentrations, suggesting a new way forward in the study of SSE composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA