Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(7): e13730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050763

RESUMEN

The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.

2.
Mol Ecol ; 32(8): 1943-1954, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36704858

RESUMEN

Current genetic methods of population assessment in conservation biology have been challenged by genome-scale analyses due to their quantitatively novel insights. These analyses include assessments of runs-of-homozygosity (ROH), genomic evolutionary rate profiling (GERP), and mutational load. Here, we aim to elucidate the relationships between these measures using three divergent ungulates: white-tailed deer, caribou, and mountain goat. The white-tailed deer is currently expanding, while caribou are in the midst of a significant decline. Mountain goats remain stable, having suffered a large historical bottleneck. We assessed genome-wide signatures of inbreeding using the inbreeding coefficient F and %ROH (FROH ) and identified evolutionarily constrained regions with GERP. Mutational load was estimated by identifying mutations in highly constrained elements (CEs) and sorting intolerant from tolerant (SIFT) mutations. Our results showed that F and FROH are higher in mountain goats than in caribou and white-tailed deer. Given the extended bottleneck and low Ne of the mountain goat, this supports the idea that the genome-wide effects of demographic change take time to accrue. Similarly, we found that mountain goats possess more highly constrained CEs and the lowest dN/dS values, both of which are indicative of greater purifying selection; this is also reflected by fewer mutations in CEs and deleterious mutations identified by SIFT. In contrast, white-tailed deer presented the highest mutational load with both metrics, in addition to dN/dS, while caribou were intermediate. Our results demonstrate that extended bottlenecks may lead to reduced diversity and increased FROH in ungulates, but not necessarily an increase in mutational load, probably due to the purging of deleterious alleles in small populations.


Asunto(s)
Ciervos , Reno , Animales , Ciervos/genética , Reno/genética , Endogamia , Genómica , Homocigoto , Rumiantes , Polimorfismo de Nucleótido Simple , Demografía , Genotipo
3.
Mol Ecol ; 32(5): 1117-1132, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516402

RESUMEN

Under the ecological speciation model, divergent selection acts on ecological differences between populations, gradually creating barriers to gene flow and ultimately leading to reproductive isolation. Hybridisation is part of this continuum and can both promote and inhibit the speciation process. Here, we used white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of speciation in hybridizing sister species. We quantified genome-wide historical introgression and performed genome scans to look for signatures of four different selection scenarios. Despite ample modern evidence of hybridisation, we found negligible patterns of ancestral introgression and no signatures of divergence with gene flow, rather localized patterns of allopatric and balancing selection were detected across the genome. Genes under balancing selection were related to immunity, MHC and sensory perception of smell, the latter of which is consistent with deer biology. The deficiency of historical gene-flow suggests that white-tailed and mule deer were spatially separated during the glaciation cycles of the Pleistocene and genome wide differentiation accrued via genetic drift. Dobzhansky-Muller incompatibilities and selection against hybrids are hypothesised to be acting, and diversity correlations to recombination rates suggests these sister species are far along the speciation continuum.


Asunto(s)
Ciervos , Flujo Génico , Animales , Ciervos/genética , Aislamiento Reproductivo , Hibridación Genética , Especiación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA