Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Adv ; 9(30): eadi5945, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494439

RESUMEN

RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.


Asunto(s)
Proteínas Bacterianas , ARN , ARN/genética , Proteínas Bacterianas/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Mutagénesis , ADN/genética , ADN/metabolismo , Replicación del ADN/genética , Ribonucleasa H/genética , Ribonucleasa H/química , Ribonucleasa H/metabolismo
2.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214986

RESUMEN

RNA:DNA hybrids such as R-loops affect genome integrity and DNA replication fork progression. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome-wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation, but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate most strongly in non-coding RNAs and 5'-UTRs of coding sequences. For Δ rnhB , hybrids accumulate preferentially in untranslated regions and early in coding sequences. Hybrid accumulation is particularly sensitive to gene expression in Δ rnhC ; in cells lacking RnhC, DNA replication is disrupted leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts interact with replication to cause mutagenesis and shape genome organization.

3.
PLoS Genet ; 18(5): e1010196, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576203

RESUMEN

CcrZ is a recently discovered cell cycle regulator that connects DNA replication initiation with cell division in pneumococci and may have a similar function in related bacteria. CcrZ is also annotated as a putative kinase, suggesting that CcrZ homologs could represent a novel family of bacterial kinase-dependent cell cycle regulators. Here, we investigate the CcrZ homolog in Bacillus subtilis and show that cells lacking ccrZ are sensitive to a broad range of DNA damage. We demonstrate that increased expression of ccrZ results in over-initiation of DNA replication. In addition, increased expression of CcrZ activates the DNA damage response. Using sensitivity to DNA damage as a proxy, we show that the negative regulator for replication initiation (yabA) and ccrZ function in the same pathway. We show that CcrZ interacts with replication initiation proteins DnaA and DnaB, further suggesting that CcrZ is important for replication timing. To understand how CcrZ functions, we solved the crystal structure bound to AMP-PNP to 2.6 Å resolution. The CcrZ structure most closely resembles choline kinases, consisting of a bilobal structure with a cleft between the two lobes for binding ATP and substrate. Inspection of the structure reveals a major restructuring of the substrate-binding site of CcrZ relative to the choline-binding pocket of choline kinases, consistent with our inability to detect activity with choline for this protein. Instead, CcrZ shows activity on D-ribose and 2-deoxy-D-ribose, indicating adaptation of the choline kinase fold in CcrZ to phosphorylate a novel substrate. We show that integrity of the kinase active site is required for ATPase activity in vitro and for function in vivo. This work provides structural, biochemical, and functional insight into a newly identified, and conserved group of bacterial kinases that regulate DNA replication initiation.


Asunto(s)
Proteínas de Unión al ADN , Ribosa , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular/genética , Colina/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Ribosa/metabolismo
4.
Methods Mol Biol ; 2479: 159-174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583738

RESUMEN

Bacillus subtilis is a widely studied Gram-positive bacterium that serves as an important model for understanding processes critical for several areas of biology including biotechnology and human health. B. subtilis has several advantages as a model organism: it is easily grown under laboratory conditions, it has a rapid doubling time, it is relatively inexpensive to maintain, and it is nonpathogenic. Over the last 50 years, advancements in genetic engineering have continued to make B. subtilis a genetic workhorse in scientific discovery. In this chapter, we describe methods for traditional gene disruptions, use of gene deletion libraries from the Bacillus Genetic Stock Center, allelic exchange, CRISPRi, and CRISPR/Cas9. Additionally, we provide general materials and equipment needed, strengths and limitations, time considerations, and troubleshooting notes to perform each method. Use of the methods outlined in this chapter will allow researchers to create gene insertions, deletions, substitutions, and RNA interference strains through a variety of methods custom to each application.


Asunto(s)
Bacillus subtilis , Edición Génica , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ingeniería Genética , Humanos
5.
Nat Rev Microbiol ; 20(8): 465-477, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35210609

RESUMEN

Bacteria are continuously exposed to numerous endogenous and exogenous DNA-damaging agents. To maintain genome integrity and ensure cell survival, bacteria have evolved several DNA repair pathways to correct different types of DNA damage and non-canonical bases, including strand breaks, nucleotide modifications, cross-links, mismatches and ribonucleotide incorporations. Recent advances in genome-wide screens, the availability of thousands of whole-genome sequences and advances in structural biology have enabled the rapid discovery and characterization of novel bacterial DNA repair pathways and new enzymatic activities. In this Review, we discuss recent advances in our understanding of base excision repair and nucleotide excision repair, and we discuss several new repair processes including the EndoMS mismatch correction pathway and the MrfAB excision repair system.


Asunto(s)
Daño del ADN , Reparación del ADN , Bacterias/genética , Bacterias/metabolismo , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
6.
J Bacteriol ; 203(15): e0017121, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031038

RESUMEN

Hydroxyurea (HU) is classified as a ribonucleotide reductase (RNR) inhibitor and has been widely used to stall DNA replication by depleting deoxyribonucleoside triphosphate (dNTP) pools. Recent evidence in Escherichia coli shows that HU readily forms breakdown products that damage DNA directly, indicating that toxicity is a result of secondary effects. Because HU is so widely used in the laboratory and as a clinical therapeutic, it is important to understand its biological effects. To determine how Bacillus subtilis responds to HU-induced stress, we performed saturating transposon insertion mutagenesis followed by deep sequencing (Tn-seq), transcriptome sequencing (RNA-seq) analysis, and measurement of replication fork progression. Our data show that B. subtilis cells elongate, and replication fork progression is slowed, following HU challenge. The transcriptomic data show that B. subtilis cells initially mount a metabolic response likely caused by dNTP pool depletion before inducing the DNA damage response (SOS) after prolonged exposure. To compensate for reduced nucleotide pools, B. subtilis upregulates the purine and pyrimidine biosynthetic machinery and downregulates the enzymes producing ribose 5-phosphate. We show that overexpression of the RNR genes nrdEF suppresses the growth interference caused by HU, suggesting that RNR is an important target of HU in B. subtilis. Although genes involved in nucleotide and carbon metabolism showed considerable differential expression, we also find that genes of unknown function (y-genes) represent the largest class of differentially expressed genes. Deletion of individual y-genes caused moderate growth interference in the presence of HU, suggesting that cells have several ways of coping with HU-induced metabolic stress. IMPORTANCE Hydroxyurea (HU) has been widely used as a clinical therapeutic and an inhibitor of DNA replication. Some evidence suggests that HU inhibits ribonucleotide reductase, depleting dNTP pools, while other evidence shows that toxic HU breakdown products are responsible for growth inhibition and genotoxic stress. Here, we use multiple, complementary approaches to characterize the response of Bacillus subtilis to HU. B. subtilis responds by upregulating the expression of purine and pyrimidine biosynthesis. We show that HU challenge reduced DNA replication and that overexpression of the ribonucleotide reductase operon suppressed growth interference by HU. Our results demonstrate that HU targets RNR and several other metabolic enzymes contributing to toxicity in bacteria.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Replicación del ADN/efectos de los fármacos , Hidroxiurea/farmacología , Nucleótidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN/efectos de los fármacos , Operón , Purinas/metabolismo , Pirimidinas/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
7.
Genetics ; 213(2): 705-720, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455721

RESUMEN

The budding yeast Saccharomyces cerevisiae undergoes a stress-responsive transition to a pseudohyphal growth form in which cells elongate and remain connected in multicellular filaments. Pseudohyphal growth is regulated through conserved signaling networks that control cell growth and the response to glucose or nitrogen limitation in metazoans. These networks are incompletely understood, and our studies identify the TORC1- and PKA-regulated kinase Ksp1p as a key stress-responsive signaling effector in the yeast pseudohyphal growth response. The kinase-defective ksp1-K47D allele results in decreased pseudohyphal morphology at the cellular and colony level, indicating that Ksp1p kinase signaling is required for pseudohyphal filamentation. To determine the functional consequences of Ksp1p signaling, we implemented transcriptional profiling and quantitative phosphoproteomic analysis of ksp1-K47D on a global scale. Ksp1p kinase signaling maintains wild-type transcript levels of many pathways for amino acid synthesis and metabolism, relevant for the regulation of translation under conditions of nutrient stress. Proteins in stress-responsive ribonucleoprotein granules are regulated post-translationally by Ksp1p, and the Ksp1p-dependent phosphorylation sites S176 in eIF4G/Tif4631p and S436 in Pbp1p are required for wild-type levels of pseudohyphal growth and Protein Kinase A pathway activity. Pbp1p and Tif4631p localize in stress granules, and the ksp1 null mutant shows elevated abundance of Pbp1p puncta relative to wild-type. Collectively, the Ksp1p kinase signaling network integrates polarized pseudohyphal morphogenesis and translational regulation through the stress-responsive transcriptional control of pathways for amino acid metabolism and post-translational modification of translation factors affecting stress granule abundance.


Asunto(s)
Hifa/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas Portadoras/genética , Ciclo Celular/genética , Proliferación Celular/genética , Factor 4G Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Glucosa/genética , Hifa/genética , Morfogénesis/genética , Fenotipo , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/genética
8.
J Bacteriol ; 201(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30670546

RESUMEN

RNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strands in vivo The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragment in vitro using purified recombinant enzymes from Bacillus subtilis We showed that RNase HII and HIII are capable of incision on Okazaki fragments in vitro and that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation in vitro Furthermore, we found that YpcP is a 5' to 3' nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragment in vitroIMPORTANCE All cells are required to resolve the different types of RNA-DNA hybrids that form in vivo When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processing in vitro and found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5' to 3' exonuclease that prefers RNA substrates with activity on Okazaki and flap substrates in vitro.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Ribonucleasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , ADN Polimerasa I/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA