Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nature ; 620(7975): 904-910, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558880

RESUMEN

Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to ß-arrestin 1 (ßarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of ßarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating ßarr1 by forming extensive interactions with the central crest of ßarr1. The tail-binding pose is further defined by a close proximity between the ßarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges ßarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-ßarr governs ßarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and ßarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.


Asunto(s)
Receptores de Glucagón , beta-Arrestina 1 , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Glucagón/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Fosfatidilinositoles/metabolismo , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 120(33): e2303696120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549266

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Receptores de Glucagón , Microscopía por Crioelectrón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ligandos , Lípidos , Péptidos/química , Receptores de Glucagón/agonistas
3.
Cell Res ; 33(10): 762-774, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286794

RESUMEN

Heterodimerization of the metabotropic glutamate receptors (mGlus) has shown importance in the functional modulation of the receptors and offers potential drug targets for treating central nervous system diseases. However, due to a lack of molecular details of the mGlu heterodimers, understanding of the mechanisms underlying mGlu heterodimerization and activation is limited. Here we report twelve cryo-electron microscopy (cryo-EM) structures of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers in different conformational states, including inactive, intermediate inactive, intermediate active and fully active conformations. These structures provide a full picture of conformational rearrangement of mGlu2-mGlu3 upon activation. The Venus flytrap domains undergo a sequential conformational change, while the transmembrane domains exhibit a substantial rearrangement from an inactive, symmetric dimer with diverse dimerization patterns to an active, asymmetric dimer in a conserved dimerization mode. Combined with functional data, these structures reveal that stability of the inactive conformations of the subunits and the subunit-G protein interaction pattern are determinants of asymmetric signal transduction of the heterodimers. Furthermore, a novel binding site for two mGlu4 positive allosteric modulators was observed in the asymmetric dimer interfaces of the mGlu2-mGlu4 heterodimer and mGlu4 homodimer, and may serve as a drug recognition site. These findings greatly extend our knowledge about signal transduction of the mGlus.


Asunto(s)
Dimerización , Microscopía por Crioelectrón
5.
Protein Cell ; 14(1): 17-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726755

RESUMEN

The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.


Asunto(s)
Antivirales , COVID-19 , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales
6.
Nat Commun ; 13(1): 7955, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575163

RESUMEN

Neuromedin U receptor 2 (NMU2), an emerging attractive target for treating obesity, has shown the capability in reducing food intake and regulating energy metabolism when activated. However, drug development of NMU2 was deferred partially due to the lack of structural information. Here, we present the cryo-electron microscopy (cryo-EM) structure of NMU2 bound to the endogenous agonist NmU-25 and Gi1 at 3.3 Å resolution. Combined with functional and computational data, the structure reveals the key factors that govern the recognition and selectivity of peptide agonist as well as non-peptide antagonist, providing the structural basis for design of novel and highly selective drugs targeting NMU2. In addition, a 25-degree rotation of Gi protein in reference to NMU2 is also observed compared in other structures of class A GPCR-Gi complexes, suggesting heterogeneity in the processes of G protein-coupled receptors (GPCRs) activation and G protein coupling.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de Neurotransmisores , Ligandos , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmisores/metabolismo , Proteínas de Unión al GTP/metabolismo
7.
Sci Adv ; 8(26): eabn8048, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35767622

RESUMEN

As the only member of the CX3C chemokine receptor subfamily, CX3CR1 binds to its sole endogenous ligand CX3CL1, which shows notable potential as a therapeutic target in atherosclerosis, cancer, and neuropathy. However, the drug development of CX3CR1 is hampered partially by the lack of structural information. Here, we present two cryo-electron microscopy structures of CX3CR1-Gi1 complexes in ligand-free and CX3CL1-bound states at 2.8- and 3.4-Å resolution, respectively. Together with functional data, the structures reveal the key factors that govern the recognition of CX3CL1 by both CX3CR1 and US28. A much smaller conformational change of helix VI upon activation than previously solved class A GPCR-Gi complex structures is observed in CX3CR1, which may correlate with three cholesterol molecules that play essential roles in conformation stabilization and signaling transduction. Thus, our data deepen the understanding of cholesterol modulation in GPCR (G protein-coupled receptor) signaling and provide insights into the diversity of G protein coupling.


Asunto(s)
Quimiocina CX3CL1 , Receptores de Quimiocina , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Colesterol , Microscopía por Crioelectrón , Humanos , Receptores de Quimiocina/metabolismo , Transducción de Señal
8.
Cell Res ; 32(8): 761-772, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35739238

RESUMEN

Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs.


Asunto(s)
Neoplasias , Receptores de Somatostatina , Microscopía por Crioelectrón , Humanos , Ligandos , Neoplasias/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/farmacología , Somatostatina/uso terapéutico
9.
Sci Adv ; 8(18): eabm1232, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507650

RESUMEN

In response to three highly conserved neuropeptides, neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP), four G protein-coupled receptors mediate multiple essential physiological processes, such as food intake, vasoconstriction, sedation, and memory retention. Here, we report the structures of the human Y1, Y2, and Y4 receptors in complex with NPY or PP, and the Gi1 protein. These structures reveal distinct binding poses of the peptide upon coupling to different receptors, reflecting the importance of the conformational plasticity of the peptide in recognizing the NPY receptors. The N terminus of the peptide forms extensive interactions with the Y1 receptor, but not with the Y2 and Y4 receptors. Supported by mutagenesis and functional studies, subtype-specific interactions between the receptors and peptides were further observed. These findings provide insight into key factors that govern NPY signal recognition and transduction, and would enable development of selective drugs.

10.
Nat Commun ; 13(1): 1775, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365641

RESUMEN

Formyl peptide receptor 2 (FPR2) has been shown to mediate the cytotoxic effects of the ß amyloid peptide Aß42 and serves as a receptor for humanin, a peptide that protects neuronal cells from damage by Aß42, implying its involvement in the pathogenesis of Alzheimer's disease (AD). However, the interaction pattern between FPR2 and Aß42 or humanin remains unknown. Here we report the structures of FPR2 bound to Gi and Aß42 or N-formyl humanin (fHN). Combined with functional data, the structures reveal two critical regions that govern recognition and activity of Aß42 and fHN, including a polar binding cavity within the receptor helical bundle and a hydrophobic binding groove in the extracellular region. In addition, the structures of FPR2 and FPR1 in complex with different formyl peptides were determined, providing insights into ligand recognition and selectivity of the FPR family. These findings uncover key factors that define the functionality of FPR2 in AD and other inflammatory diseases and would enable drug development.


Asunto(s)
Neuroprotección , Receptores de Formil Péptido/química , Receptores de Lipoxina/química , Péptidos beta-Amiloides , Péptidos y Proteínas de Señalización Intracelular , Receptores de Formil Péptido/metabolismo
11.
Nature ; 604(7907): 779-785, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418679

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1-7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk-transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Ligandos , Proteínas Oncogénicas/agonistas , Proteínas Oncogénicas/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
12.
Nat Commun ; 13(1): 1057, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217653

RESUMEN

Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptores de Glucagón , Microscopía por Crioelectrón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/uso terapéutico , Humanos , Péptidos/química , Receptores Acoplados a Proteínas G
13.
Nat Chem Biol ; 17(12): 1238-1244, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34556862

RESUMEN

Cholecystokinin A receptor (CCKAR) belongs to family A G-protein-coupled receptors and regulates nutrient homeostasis upon stimulation by cholecystokinin (CCK). It is an attractive drug target for gastrointestinal and metabolic diseases. One distinguishing feature of CCKAR is its ability to interact with a sulfated ligand and to couple with divergent G-protein subtypes, including Gs, Gi and Gq. However, the basis for G-protein coupling promiscuity and ligand recognition by CCKAR remains unknown. Here, we present three cryo-electron microscopy structures of sulfated CCK-8-activated CCKAR in complex with Gs, Gi and Gq heterotrimers, respectively. CCKAR presents a similar conformation in the three structures, whereas conformational differences in the 'wavy hook' of the Gα subunits and ICL3 of the receptor serve as determinants in G-protein coupling selectivity. Our findings provide a framework for understanding G-protein coupling promiscuity by CCKAR and uncover the mechanism of receptor recognition by sulfated CCK-8.


Asunto(s)
Colecistoquinina/química , Receptor de Colecistoquinina A/química , Receptores Acoplados a Proteínas G/química , Sincalida/análogos & derivados , Secuencia de Aminoácidos , Benzodiazepinonas/química , Microscopía por Crioelectrón , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Sincalida/química , Triazoles/química
14.
Nat Chem Biol ; 17(12): 1230-1237, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34556863

RESUMEN

Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR-gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.


Asunto(s)
Devazepida/química , Receptores de Colecistoquinina/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalización , Humanos , Ácidos Indolacéticos/química , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores de Colecistoquinina/genética , Relación Estructura-Actividad , Tiazoles/química
15.
Nat Commun ; 12(1): 4151, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230484

RESUMEN

The chemokine receptor CCR5 plays a vital role in immune surveillance and inflammation. However, molecular details that govern its endogenous chemokine recognition and receptor activation remain elusive. Here we report three cryo-electron microscopy structures of Gi1 protein-coupled CCR5 in a ligand-free state and in complex with the chemokine MIP-1α or RANTES, as well as the crystal structure of MIP-1α-bound CCR5. These structures reveal distinct binding modes of the two chemokines and a specific accommodate pattern of the chemokine for the distal N terminus of CCR5. Together with functional data, the structures demonstrate that chemokine-induced rearrangement of toggle switch and plasticity of the receptor extracellular region are critical for receptor activation, while a conserved tryptophan residue in helix II acts as a trigger of receptor constitutive activation.


Asunto(s)
Quimiocinas/química , Quimiocinas/metabolismo , Receptores CCR5/química , Receptores CCR5/metabolismo , Sitios de Unión , Quimiocina CCL3/metabolismo , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Microscopía por Crioelectrón , Ligandos , Modelos Moleculares , Conformación Proteica , Receptores CCR5/genética
16.
Nature ; 594(7864): 589-593, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135509

RESUMEN

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Asunto(s)
Receptores de Glutamato Metabotrópico/química , Microscopía por Crioelectrón , Humanos , Multimerización de Proteína , Estructura Terciaria de Proteína
17.
Nature ; 594(7864): 583-588, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135510

RESUMEN

The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.


Asunto(s)
Proteínas de Unión al GTP/química , Receptores de Glutamato Metabotrópico/química , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
18.
Vet Microbiol ; 255: 109022, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33711567

RESUMEN

Herpesvirus based multivalent vaccines have been extensively studied, whereas few of them have been successfully used in clinic and animal husbandry industry due to the low expression of foreign immunogens in herpesvirus. In this study, we developed a new strategy to construct herpesvirus based bivalent vaccine with high-level expression of foreign immunogen, by which the ORF2 gene encoding the major antigen protein Cap of porcine circovirus type 2 (PCV2), was highly expressed in pseudorabies virus (PRV). To obtain the high expression of PCV2 immunogen, tandem repeats of PCV2 ORF2 gene were firstly linked by protein quantitation ratioing (PQR) linker to reach equal expression of each ORF2 gene. Then, the multiple copies of ORF2 gene were respectively inserted into the gE and gG sites of PRV using CRISPR/Cas9 system, in which the expression of ORF2 gene was driven by endogenous strong promoters of PRV. Through this way, the highest yield of Cap protein was achieved in two copies of quadruple ORF2 gene insertion. Finally, in mice and pigs immunized with the bivalent vaccine candidate, we detected high titer of specific antibodies for PRV and neutralized antibodies for PCV2, and observed protective effect of the bivalent vaccine candidate against PRV challenge in immunized pigs, suggesting a potential clinical application of the bivalent vaccine candidate we constructed. Together, our strategy could be extensively applied to the generation of other multivalent vaccines, and will pave the way to construct herpesvirus based multivalent vaccines to effectively reduce the cost of vaccine.


Asunto(s)
Circovirus/inmunología , Herpesvirus Suido 1 , Vacunas contra la Seudorrabia/inmunología , Seudorrabia/prevención & control , Enfermedades de los Porcinos/prevención & control , Animales , Sistemas CRISPR-Cas , Línea Celular , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Plásmidos , Porcinos , Enfermedades de los Porcinos/sangre , Proteínas Virales/inmunología
19.
Nat Commun ; 12(1): 737, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531491

RESUMEN

The human neuropeptide Y (NPY) Y2 receptor (Y2R) plays essential roles in food intake, bone formation and mood regulation, and has been considered an important drug target for obesity and anxiety. However, development of drugs targeting Y2R remains challenging with no success in clinical application yet. Here, we report the crystal structure of Y2R bound to a selective antagonist JNJ-31020028 at 2.8 Å resolution. The structure reveals molecular details of the ligand-binding mode of Y2R. Combined with mutagenesis studies, the Y2R structure provides insights into key factors that define antagonistic activity of diverse antagonists. Comparison with the previously determined antagonist-bound Y1R structures identified receptor-ligand interactions that play different roles in modulating receptor activation and mediating ligand selectivity. These findings deepen our understanding about molecular mechanisms of ligand recognition and subtype specificity of NPY receptors, and would enable structure-based drug design.


Asunto(s)
Receptores de Neuropéptido Y/metabolismo , Benzamidas/farmacología , Cristalografía por Rayos X , Células HEK293 , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Hormonas Peptídicas/farmacología , Piperazinas/farmacología , Estructura Secundaria de Proteína , Piridinas/farmacología , Receptores de Neuropéptido Y/genética , Difracción de Rayos X
20.
Acta Pharmacol Sin ; 41(12): 1531-1538, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33060777

RESUMEN

G protein-coupled receptors (GPCRs) play important roles in human physiology. GPCRs are involved in immunoregulation including regulation of the inflammatory response. Chemotaxis of phagocytes and lymphocytes is mediated to a great extent by the GPCRs for chemoattractants including myriads of chemokines. Accumulation and activation of phagocytes at the site of inflammation contribute to local inflammatory response. A handful of GPCRs have been found to transduce anti-inflammatory signals that promote resolution of inflammation. These GPCRs interact with selected metabolites of arachdonic acid, such as lipoxins, and of omega-3 essential fatty acids, such as resolvins and protectins. Despite mounting evidence for the in vivo functions of these anti-inflammatory and pro-resolving ligands paired with their respective GPCRs, the underlying signaling mechanisms have not been fully delineated. The present review summarizes what we have learned about these GPCRs, their structures and signaling pathways and the prospect of targeting these receptors for novel anti-inflammatory therapies.


Asunto(s)
Inmunomodulación/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Humanos , Lipoxinas/metabolismo , Simulación del Acoplamiento Molecular , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA