Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Adv Sci (Weinh) ; : e2402349, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137939

RESUMEN

Three novel asymmetric Ir(III) complexes have been rationally designed to optimize their emitting dipole orientations (EDO) and enhance light outcoupling in blue phosphorescent organic light-emitting diodes (OLEDs), thereby boosting their external quantum efficiency (EQE). Bulky electron-donating groups (EDGs), namely: carbazole (Cz), di-tert-butyl carbazole (tBuCz), and phenoxazine (Pxz) are incorporated into the tridentate dicarbene pincer chelate to induce high degree of packing anisotropy, simultaneously enhancing their photophysical properties. Angle-dependent photoluminescence (ADPL) measurements indicate increased horizontal transition dipole ratios of 0.89 and 0.90 for the Ir(III) complexes Cz-dfppy-CN and tBuCz-dfppy-CN, respectively. Analysis of the single crystal structure and density functional theory (DFT) calculation results revealed an inherent correlation between molecular aspect ratio and EDO. Utilizing the newly obtained emitters, the blue OLED devices demonstrated exceptional performance, achieving a maximum EQE of 30.7% at a Commission International de l'Eclairage (CIE) coordinate of (0.140, 0.148). Optical transfer matrix-based simulations confirmed a maximum outcoupling efficiency of 35% due to improved EDO. Finally, the tandem OLED and hyper-OLED devices exhibited a maximum EQE of 44.2% and 31.6%, respectively, together with good device stability. This rational molecular design provides straightforward guidelines to reach highly efficient and stable saturated blue emission.

2.
Sci Total Environ ; 950: 175244, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111440

RESUMEN

The complex relationship between wet-dry transition in the Poyang Lake basin and groundwater storage significantly affects the lake's hydrology, downstream ecological state, and overall security along the Yangtze River in China. There is, however, a notable lack of systematic exploration into how various factors drive spatiotemporal variability in groundwater level (GWL). Using local indicators of spatial association (LISA), spatial non-stationarity models, and multi-source data, our analysis explores the spatial distribution of GWL and quantifies the influence of driving factors on its spatiotemporal non-stationarity at annual and monthly scales. We also compare driving factor contributions in hilly, plain, and local areas within the Poyang Lake basin. Our findings reveal significant local clustering of GWL, indicating substantial spatial autocorrelation and geographic heterogeneity in GWL. Influencing factors exhibit non-stationary effects on GWL at spatial and temporal scales, with precipitation (P), ground surface elevation (GSE), and soil moisture (SM) being primary contributors, generally exerting positive effects. SM contributes most during dry years and normal periods. P and the Palmer Drought Severity Index (PDSI) have greater impacts in hilly areas, while GSE shows the opposite trend. Rainfall is a source of groundwater recharge, with a lagged response observed in GWL to rainfall in this basin. The lag time is about 1-2 months. Evapotranspiration is not the dominant discharge pathway. The decrease in GWL during the dry season is mainly due to reduced precipitation recharge and increased lateral groundwater discharge from areas of high hydraulic head to areas of low hydraulic head.

3.
Biomater Sci ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058335

RESUMEN

Hydrophilic antifouling coatings based on zwitterionic polymers have been widely applied for the surface modification of bone implants to combat biofilm formation and reduce the likelihood of implant-related infections. However, their long-term effectiveness is significantly limited by the lack of effective and precise antibacterial activity. Here, a pH-responsive smart zwitterionic antibacterial coating (PSB/GS coating) was designed and robustly fabricated onto titanium-base bone implants by using a facile two-step method. First, dopamine (DA) and a poly(sulfobetaine methacrylate-co-dopamine methacrylamide) (PSBDA) copolymer were deposited on implants via mussel-inspired surface chemistry, resulting in a hydrophilic base coating with abundant catechol residues. Next, an amino-rich antibiotic, gentamicin sulfate (GS), was covalently linked to the coating through the formation of acid-sensitive Schiff base bonds between the amine groups of GS and the catechol residues present in both the zwitterionic polymer and the DA component. During the initial implantation period, the hydrophilic zwitterionic polymers demonstrated the desired anti-fouling properties that could effectively reduce protein and bacterial adhesion by over 90%. With time, the bacterial proliferation led to a decrease in the microenvironment pH value, resulting in the hydrolysis of the acid-sensitive Schiff base bonds, thereby releasing GS on demand and effectively enhancing the anti-biofilm properties of coatings. Benefiting from this synergistic antifouling and smart antibacterial activities, the PSB/GS coating exerted an excellent anti-infective activity in both in vivo preoperative and postoperative infection rat models. This proposed facile yet effective coating strategy is expected to provide a promising solution to combat bone implant-related infections.

5.
Front Physiol ; 15: 1403391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938746

RESUMEN

Monopterus albus is one of China's renowned and superior aquaculture species, with its seedlings mainly sourced from wild capture. One of the bottlenecks in M. albus aquaculture is the high mortality rate and low feeding initiation rate from stocking wild fry to the initiation of feeding. In production, trash fish is commonly used to wean M. albus juveniles onto feeding. In this study, we introduced three other natural feeds, earthworms (EW), yellow mealworms (YMW), and fly maggots (FM), with frozen trash fish (TF) serving as the control group, to evaluate the effects of these four natural feeds on the survival rate, feeding initiation, antioxidant enzymes activity, and body composition of M. albus juveniles under recirculating water aquaculture conditions. The experiment comprised four treatments, each with three replicates. Each replicate consisted of stocking 150 M. albus juveniles weighing 10.02 ± 0.89 g in size, raised for 5 weeks. The survival rate of the YMW group was 73.33%-85.33%, which was significantly higher than that of the other three bait groups (p < 0.05). The four bait groups showed no significant differences in final body weight and specific growth rate (SGR) (p > 0.05). The EW group showed the highest final body weight, with an average SGR of 2.73, whereas the YMW group had an average SGR of 1.87. The average daily feeding amount was significantly higher in EW and YMW groups than in the other two groups (p < 0.05). The percentage of feeding amount to fish weight in the EW group reached 7.3% in the fifth week. After 5 weeks of cultivation, NO2 --N content was significantly higher in the waters of the TF and EW groups than in the waters of the FM and YMW groups (p < 0.05), there was no significant difference in TAN content among the treatment groups (p > 0.05). Liver malondialdehyde content was significantly higher in the TF group than in the other bait groups (p < 0.05). GSH-Px activity was significantly higher in the EW group than in the FM group and YMW group. No significant differences in SOD and CAT activity and T-AOC were observed among the bait groups (p > 0.05). The increase in crude protein content was significantly higher in the TF group than in the FM group, but the increase in crude ash content was significantly lower in the TFgroup. In conclusion, Tenebrio molitor could potentially serve as one of the alternative feeds during the initial stages of M. albus juveniles stocking.

6.
Sci Adv ; 10(20): eadl0479, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748805

RESUMEN

Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.


Asunto(s)
Inmunoterapia , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Inmunoterapia/métodos , Animales , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/metabolismo , Materiales Biocompatibles/química
7.
Int J Nanomedicine ; 19: 1909-1922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414522

RESUMEN

Background: Radionuclides have important roles in clinical tumor radiotherapy as they are used to kill tumor cells or as imaging agents for drug tracing. The application of radionuclides has been developing as an increasing number of nanomaterials are used to deliver radionuclides to tumor areas to kill tumor cells. However, promoting the efficient combination of radionuclides and nanocarriers (NCs), enhancing radionuclide loading efficiency, and avoiding environmental pollution caused by radionuclide overuse are important challenges that hinder their further development. Methods: In the present study, a new small molecule compound (3-[[(2S)-2-hydroxy-3-(4-hydroxyphenyl)-1-carbonyl] amino]-alanine, abbreviation: HN, molecular formula: C12H16N2O5) was synthesized as a linker between radionuclide iodine-125 (125I) and NCs to enable a more efficient binding between NCs and radionuclides. Results: In vitro evidence indicated that the linker was able to bind 125I with higher efficiency (labeling efficiency >80%) than that of tyrosine, as well as various NCs, such as cellulose nanofibers, metal oxide NCs, and graphene oxide. Single-photon emission computed tomography/computed tomography imaging demonstrated the biological distribution of 125I-labeled NCs in different organs/tissues after administration in mice. Conclusion: These results showed an improvement in radionuclide labeling efficiency for nanocarriers and provided an approach for nanocarrier image tracing.


Asunto(s)
Radioisótopos de Yodo , Neoplasias , Ratones , Animales , Radioisótopos de Yodo/química , Neoplasias/tratamiento farmacológico , Modelos Animales de Enfermedad , Tomografía Computarizada de Emisión de Fotón Único/métodos
8.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 419-433, 2024 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-38369830

RESUMEN

Coronaviruses pose significant threats to animal and human health, leading to the development of various infectious diseases. It is critical to develop effective vaccines and antiviral medicines to prevent and treat these diseases. The coronavirus genome encodes several types of proteins, including structural, nonstructural, and accessory proteins. Among them, nonstructural protein 13 (NSP13) helicase plays a crucial role in regulating viral replication and the innate immune response of the host. Therefore, it serves as a vital target for the development of anti-coronavirus drugs. This paper presents a comprehensive review of NSP13 research, covering its source, structure, sequence conservation, unwinding mechanism, enzyme inhibitors, protein interaction, and immune regulation. Additionally, the paper analyzes the current challenges in NSP13 research and aims to provide a theoretical foundation for the development of broad-spectrum antiviral drugs targeting NSP13.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Humanos , ADN Helicasas/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral , ARN Helicasas/genética , ARN Helicasas/metabolismo
9.
Small Methods ; : e2301555, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185747

RESUMEN

Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax ) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2 . Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.

10.
Poult Sci ; 103(3): 103397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295496

RESUMEN

Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. However, because there are no up-to-date reports of examining the distribution of GyVg1 in flocks in southern China, the epidemiology of this virus is unknown. To investigate the prevalence and genetic evolution of GyVg1, a total of 2,077 field samples collected from 113 chicken farms in 6 provinces in southern China during 2020 to 2022 were tested. Among them, 315 samples (315/2,077, 15.17%) were positive for GyVg1 by PCR. The positive rate of GyVg1 detection between different regions of southern China ranged from 11.69% (Guangdong) to 22.46% (Yunnan). The correlation between GyVg1 prevalence and sample source groups was analyzed, the results showing that the highest seroprevalence of GyVg1 was observed in visceral tissues (27.34%, 187/684), significantly higher (P < 0.05) than that of feather shafts (17.22%, 31/180), serums (8.85%, 78/881), and fecal (5.72%, 19/332). Additionally, the complete genomes of 10 GyVg1 strains were sequenced and analyzed, which showed nucleotide identities of 96.2 to 99.9%, 97.0 to 100.0%, 95.2 to 100.0%, and 95.7 to 99.8% in the complete genome, ORF1, ORF2, and ORF3, respectively, and 94.4 to 100.0%, 91.3 to 100.0%, and 98.7 to 100.0% amino acid similarity in the VP2, VP3, and VP1 proteins, respectively. Phylogenetic analysis of the whole genome showed that 10 GyVg1 strains belong to genotype I, and one strain belongs to genotype III. Sequence analysis showed several amino acid substitutions in both the VP1, VP2, and VP3 proteins. Our results enhance the understanding of the molecular characterization of GyVg1 infection in southern China. In conclusion, this study reveals the high prevalence and high genetic differentiation of GyVg1 in Chinese chickens and suggests that the potential impact of GyVg1 on the chicken industry may be of concern.


Asunto(s)
Gyrovirus , Animales , Gyrovirus/genética , Filogenia , Prevalencia , Estudios Seroepidemiológicos , Análisis de Secuencia de ADN/veterinaria , Pollos/genética , China/epidemiología
11.
Small ; 20(12): e2307500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940631

RESUMEN

The promising cyclometalated iridium (III) complexes have been proved to possess great potential in vacuum-deposited organic light-emitting diodes (OLEDs) applications for full-color displays and white solid-state lighting sources. Herein, based on the unique bidentate ligand of dibenzo[a,c]phenazine (dbpz) group with strong conjugated effect of aromatic rings for red emission, four novel [3+2+1] coordinated iridium (III) emissive materials have been rationally designed and synthesized. The monodentate ligands of -CN and -OCN have been effectively employed to tune the deep-red emission of 628-675 nm with high photoluminescence quantum yields up to 98%. Moreover, all devices displayed deep-red color coordinates ranging from (0.675, 0.325) to (0.716, 0.284), which is close to the standard-red color coordinates of (0.708, 0.292), as recommended by International Telecommunication Union Radiocommunication (ITU-R) BT.2020. The device based on nBuIr(dbpz)CN with an exciplex cohost has exhibited maximum external quantum efficiencies of 20.7% and good stability. With nBuIr(dbpz)CN as an effective sensitizer, the nBuIr(dbpz)OCN based phosphorescent OLED devices have successfully demonstrated cascading energy transfer processes, contributing to pure red emission with maximum luminance as high as 6471 cd m-2. Therefore, this work has been successfully demonstrated rational molecular design strategy of [3+2+1] iridium complexes to obtain highly efficient deep-red electrophosphorescent emission.

12.
Poult Sci ; 103(2): 103264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035474

RESUMEN

In recent years, the infection rate of avian encephalomyelitis virus (AEV) infection in chickens has risen significantly, seriously endangering the development of the chicken industry. In order to study the current epidemiological status of AEV in China as well as the genetic and evolutionary patterns of the virus, we conducted a survey and genomic analysis of chicken AEV. The results showed that 46.26% (136/294) of the tissue samples tested (n = 294) were positive for AEV, with the highest positivity rate of 62.24% (61/98) among tissue samples from chickens aged 13 to 18 wk. The complete genomes of 2 representative AEV strains were determined, and the VP1 evolutionary tree results revealed that the 2 representative strains belonged to a novel AEV strain. Multiple alignment analysis showed that the ORF1 genes of the 2 representative strains differed by 82.3 to 99.9% at the amino acid level compared with the reference AEV strain, and the mutations at the key amino acid loci of VP2 and VP3 were the same as those in the chick embryo-adapted strain. The analysis makes up for the molecular epidemiological data and genetic variation of the 2 representative strains. The analysis makes up for the molecular epidemiological data and genetic variation of AEV and provides a basis for further understanding the spread of AEV in China.


Asunto(s)
Virus de la Encefalomielitis Aviar , Enfermedades de las Aves de Corral , Embrión de Pollo , Animales , Pollos , Virus de la Encefalomielitis Aviar/genética , Mutación , Aminoácidos , China/epidemiología , Enfermedades de las Aves de Corral/epidemiología
13.
Small ; 20(24): e2311114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38157494

RESUMEN

Due to the relatively low photoluminescence quantum yield (PLQY) and horizontal dipole orientation of doped films, anthracene-based fluorescent organic light-emitting diodes (F-OLEDs) have faced a great challenge to achieve high external quantum efficiency (EQE). Herein, a novel approach is introduced by incorporating penta-helicene into anthracene, presented as linear-shaped 3-(4-(10-phenylanthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (BABH) and 3-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (NABH). These blue hosts exhibit minimal intermolecular overlap of π-π stacking, effectively suppressing excimer formation, which facilitates the effective transfer of singlet energy to the fluorescent dopant for PLQY as high as 90%. Additionally, the as-obtained two hosts of BABH and NABH have effectively demonstrated major horizontal components transition dipole moments (TDM) and high thermal stability with glass transitional temperature (Tg) surpassing 188 °C, enhancing the horizontal dipole orientation of their doped films to be 89% and 93%, respectively. The OLEDs based on BABH and NABH exhibit excellent EQE of 10.5% and 12.4% at 462 nm and device lifetime up to 90% of the initial luminance over 4500 h at 100 cd m-2, which has firmly established them as among the most efficient blue F-OLEDs based on anthracene to date to the best knowledge. This work provides an instructive strategy to design an effective host for highly efficient and stable F-OLEDs.

14.
BMC Vet Res ; 19(1): 232, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936127

RESUMEN

BACKGROUND: Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS: The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/µL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS: The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.


Asunto(s)
Recombinasas , Transcripción Reversa , Animales , Recombinasas/metabolismo , Gansos , Sensibilidad y Especificidad , China , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
16.
Adv Sci (Weinh) ; 10(29): e2301112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37653609

RESUMEN

Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.

17.
Sci Total Environ ; 904: 166662, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657541

RESUMEN

Machine learning has been widely used for groundwater prediction. However, the hysteresis response of groundwater depth (GD) to input features has not been fully investigated. This study uses an interpretation method to reveal the interplay between climate, human activity, and GD while considering the response of groundwater to multiple factors. Six factors [precipitation (P), wind speed (WS), temperature (T), population (POP), gross domestic product (GDP), and effective irrigated area (EIA)] were selected to analyze the hysteresis response of GD in terms of the lag correlation coefficient and lag time. The correlation between climatic variables and GD was weaker than that of anthropogenic variables. The lag time between variables and different types of GD was less than four months at most sites, except for EIA and WS in deep groundwater. The SVM model achieved satisfactory performance in 89 % of the sites. If there were sharp changes in GD during the testing period or significant variations in its seasonal patterns at different times, the SVM model performed poorly. The model was interpreted using the Shapley additive explanation method. The impact of POP and GDP on deep groundwater in irrigated areas was higher than that of shallow groundwater. In urban areas with intensive human activities, anthropogenic variables were the main factors affecting shallow groundwater while the impact of climate was gradually increasing in the suburbs. The influence of precipitation on shallow groundwater was decreased after water transfer from the South-to-North Water Diversion project. Furthermore, this study proposed a multifactor-driven conceptual model that can provide recommendations for analyzing groundwater dynamics in similar areas.

18.
Microbiome ; 11(1): 155, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475003

RESUMEN

BACKGROUND: For more than a century, the Koch's postulates have been the golden rule for determining the causative agents in diseases. However, in cases of multiple pathogens-one disease, in which different pathogens can cause the same disease, the selection of microorganisms that regress infection is hard when Koch's postulates are applied. Microbiome approaches can obtain relatively complete information about disease-related microorganisms and can guide the selection of target microorganisms for regression infection. In the present study, whitish muscle syndrome (WMS) of Scylla paramamosain, which has typical symptoms with whitish muscle and blackened hemolymph was used as an example to establish a new research strategy that integrates microbiome approaches and Koch's postulates to determinate causative agents of multiple pathogens-one disease. RESULTS: Microbiome results revealed that Aeromonas, Acinetobacter, Shewanella, Chryseomicrobium, Exiguobacterium, Vibrio and Flavobacterium, and Kurtzmaniella in hemolymph were bacterial and fungal indicators for WMS. A total of 23 bacteria and 14 fungi were isolated from hemolymph and muscle tissues, and among the bacteria, Shewanella chilikensis, S. xiamenensis, Vibrio alginolyticus, S. putrefaciens, V. fluvialis, and V. parahaemolyticus were present in hemolymph and/or muscle tissues in each WMS crab, and the last three species were also present in three Healthy crabs. The target bacteria and fungi were further screened to regression infections based on two criteria: whether they belonged to the indicator genera for WMS, whether they were isolated from both hemolymph and muscle tissues in most WMS crabs. Only S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria. The six bacteria that met both two criteria and six fungi and another bacterium that unmatched any of two criteria were used to perform regression infection experiments based on Koch's postulates. S. chilikensis, S. putrefaciens, S. xiamenensis, V. alginolyticus, V. fluvialis, and V. parahaemolyticus met both two criteria, and the results indicate that they cause WMS in crabs independently. CONCLUSIONS: This study fully demonstrated that our research strategy that integrates the microbiome and Koch's postulates can maximize the ability to catch pathogens in one net for the situation of multiple pathogens-one disease. Video Abstract.


Asunto(s)
Braquiuros , Microbiota , Vibrio , Animales , Braquiuros/microbiología , Músculos
19.
BMC Plant Biol ; 23(1): 302, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280509

RESUMEN

Heat stress poses a threat to plants in arid and semiarid regions, leading to soil salinization and plant mortality. Researchers are exploring remedies to alleviate these effects, including using gibberellic acid (GA3) to regulate plant enzymes and antioxidants. Additionally, sodium nitroprusside (SNP) is gaining attention, but its combined effect with GA3 requires further research. To address this gap, we investigated the effects of GA3 and SNP on plants under heat stress conditions. For that, wheat plants were cultivated under 40 °C for 6 h per day (15 days). Sodium nitroprusside (donor of NO and SNP) and gibberellic acid (GA3), respectively, with 100 µM and 5 µg/ml concentrations, were applied as foliar sprays at 10 days after sowing (DAS). Results showed that SNP + GA3 treatment had the highest plant height (4.48% increase), plant fresh weight (29.7%), plant dry weight (87%), photosynthetic rate (39.76%) and stomatal conductance (38.10%), and Rubisco (54.2%) compared to the control. Our findings indicate a significant increase in NO, H2O2, TBARS, SOD, POD, APX, proline, GR, and GB that greatly scavenged reactive oxygen species (ROS) for decreasing the adverse effect of stress. Such findings confirmed the efficacy of the combined treatment of SNP + GA3 under high-temperature stress compared to the solitary application of GA3, SNP, and control. In conclusion, using SNP + GA3 is a better strategy for mitigating heat stress in wheat than individual applications. Further research is recommended to validate the effectiveness of SNP + GA3 in other cereal crops.


Asunto(s)
Peróxido de Hidrógeno , Triticum , Nitroprusiato/farmacología , Triticum/fisiología , Peróxido de Hidrógeno/farmacología , Respuesta al Choque Térmico
20.
Poult Sci ; 102(8): 102830, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343345

RESUMEN

Poultry is one of the most commonly farmed species and the most widespread meat industries. However, numerous poultry flocks have been long threatened by pathogenic bacterial infections, especially antimicrobial resistant pathogens. Here the prevalence and the antimicrobial resistance (AMR) profiles of bacterial pathogens isolated from poultry in Jiangxi Province, China were investigated. From 2020 to 2022, 283 tissue and liquid samples were collected from clinically diseased poultry, including duck, chicken, and goose, with an overall positive isolation rate of 62.90%. Among all the 219 bacterial isolates, 29 strains were gram-positive and 190 strains were gram-negative. Major bacteria species involved were avian pathogenic Escherichia coli (APEC; 57.53%; 126/219), followed by Salmonella spp. (11.87%, 26/219), Pasteurella multocida (6.39%, 14/219), and Staphylococcus spp. (1.22%, 11/219). Antimicrobial susceptibility testing showed the APEC isolates displayed considerably higher levels of AMR than the Salmonella and P. multocida isolates. The APEC isolates showed high resistance rate to amoxicillin (89.68%), ampicillin (89.68%), and florfenicol (83.33%), followed by streptomycin (75.40%), cefradine (65.87%), and enrofloxacin (64.29%). Multidrug-resistant isolates were observed in APEC (99.21%), Salmonella spp. (96.16%), and P. multocida (85.71%), and nearly 3 quarters of the APEC strains were resistant to 7 or more categories of antimicrobial drugs. Moreover, blaNDM genes associated with carbapenemase resistance and mcr-1 associated with colisitin resistance were detected in the APEC isolates. Our findings could provide evidence-based guidance for veterinarians to prevent and control bacterial diseases, and be helpful for monitoring the emerging and development of AMR in poultry bacterial pathogens.


Asunto(s)
Infecciones por Escherichia coli , Pasteurella multocida , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Antibacterianos/farmacología , Pollos , Farmacorresistencia Bacteriana , Prevalencia , Escherichia coli , Infecciones por Escherichia coli/veterinaria , Salmonella , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA