Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39087944

RESUMEN

BACKGROUND: Thyroid differentiation score (TDS), calculated based on mRNA expression levels of 16 genes controlling thyroid metabolism and function, has been proposed as a measure to quantify differentiation in PTC. The objective of this study is to determine whether TDS is associated with survival outcomes across patient cohorts. METHODS: Two independent cohorts of PTC patients were used: 1) the Cancer Genome Atlas (TCGA) thyroid cancer study (N=372), 2) MD Anderson Cancer Center (MDACC) cohort (N=111). The primary survival outcome of interest was progression-free interval (PFI). Association with overall survival (OS) was also explored. The Kaplan-Meier method and Cox proportional hazards models were used for survival analyses. RESULTS: In both cohorts, TDS was associated with tumor and nodal stage at diagnosis as well as tumor driver mutation status. High TDS was associated with longer PFI on univariable analyses across cohorts. After adjusting for overall stage, TDS remained significantly associated with PFI in the MDACC cohort only (aHR 0.67, 95%CI 0.52-0.85). In subgroup analyses stratified by tumor driver mutation status, higher TDS was most consistently associated with longer PFI in BRAFV600E-mutated tumors across cohorts after adjusting for overall stage (TCGA: aHR 0.60, 95% CI: 0.33-1.07; MDACC: aHR 0.59, 95% CI: 0.42-0.82). For OS, increasing TDS was associated with longer OS in the overall MDACC cohort (aHR=0.78, 95% CI:0.63-0.96), where the median duration of follow-up was 12.9 years. CONCLUSION: TDS quantifies the spectrum of differentiation status in PTC and may serve as a potential prognostic biomarker in PTC, mostly promisingly in BRAFV600E-mutated tumors.

2.
Discov Oncol ; 15(1): 232, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886296

RESUMEN

Lung metastases are the primary cause of death for osteosarcoma (OS) patients. We recently validated interleukin-11 receptor α (IL-11Rα) as a molecular target for the inhibition of OS lung metastases. Since there is no clinically approved antibody against this receptor, we sought to identify downstream targets that mediate the effects of IL-11Rα signaling. We used shRNA to deplete IL-11Rα from OS cells; as a complementary approach, we added IL-11 exogenously to OS cells. The resulting changes in gene expression identified EZH2 as a downstream candidate. This was confirmed by knockdown of IL-11Rα in OS cells, which led to increased expression of genes repressed by histone methyltransferase EZH2, including members of the WNT pathway, a known target pathway of EZH2. Exogenous IL-11 increased the global levels of histone H3 lysine 27 trimethylation, evidence of EZH2 activation. Treatment with the EZH2 inhibitor GSK126 significantly reduced in vitro proliferation and increased cell-cycle arrest and apoptosis, which were partially mediated through the WNT pathway. In vivo, treatment of an orthotopic nude mouse model of OS with GSK126 inhibited lung metastatic growth and prolonged survival. In addition, significantly shorter recurrence-free survival was seen in OS patients with high levels of EZH2 in their primary tumors (P < .05). This suggests that IL-11Rα promotes OS lung metastasis via activation of EZH2. Thus, blocking EZH2 activity may be an effective strategy for inhibiting OS lung metastasis and improving prognosis.

3.
Dev Cell ; 59(11): 1475-1486.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574731

RESUMEN

Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3ß inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Células Madre , Telómero , Animales , Ratones , Telómero/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Células Madre/metabolismo , Células Madre/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Adenoma/patología , Adenoma/genética , Adenoma/metabolismo , Intestinos/patología , Diferenciación Celular , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Daño del ADN , Ratones Endogámicos C57BL , Vía de Señalización Wnt
4.
Mol Cancer Ther ; 23(7): 1057-1065, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561019

RESUMEN

Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR-targeted treatments. Therefore, we designed a protein- and genomic-based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS; 30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared with ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR-related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n = 12) versus Non-HomDel (n = 37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNA-SEH2B HomDels in U-LMS was 76%, 93%, and 71%, respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.


Asunto(s)
Reparación del ADN , Leiomiosarcoma , Ribonucleasa H , Humanos , Ribonucleasa H/genética , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Leiomiosarcoma/mortalidad , Femenino , Biomarcadores de Tumor/genética , Masculino , Pronóstico , Persona de Mediana Edad , Anciano , Daño del ADN
5.
Nat Cancer ; 5(4): 625-641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351182

RESUMEN

Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Liposarcoma , Terapia Neoadyuvante , Neoplasias Retroperitoneales , Humanos , Liposarcoma/tratamiento farmacológico , Liposarcoma/inmunología , Terapia Neoadyuvante/métodos , Neoplasias Retroperitoneales/tratamiento farmacológico , Neoplasias Retroperitoneales/inmunología , Masculino , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Anciano , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Sarcoma/terapia , Sarcoma/inmunología , Sarcoma/tratamiento farmacológico , Nivolumab/uso terapéutico , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos
6.
HGG Adv ; 4(4): 100224, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37593416

RESUMEN

Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Niño , Rabdomiosarcoma/genética , Rabdomiosarcoma Embrionario/genética , Genómica , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas , Proteínas de Unión a Retinoblastoma/genética
9.
Nat Commun ; 13(1): 3057, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650195

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is an aggressive, usually incurable sarcoma subtype that predominantly occurs in post-pubertal young males. Recent evidence suggests that the androgen receptor (AR) can promote tumor progression in DSRCTs. However, the mechanism of AR-induced oncogenic stimulation remains undetermined. Herein, we demonstrate that enzalutamide and AR-directed antisense oligonucleotides (AR-ASO) block 5α-dihydrotestosterone (DHT)-induced DSRCT cell proliferation and reduce xenograft tumor burden. Gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to elucidate how AR signaling regulates cellular epigenetic programs. Remarkably, ChIP-seq revealed novel DSRCT-specific AR DNA binding sites adjacent to key oncogenic regulators, including WT1 (the C-terminal partner of the pathognomonic fusion protein) and FOXF1. Additionally, AR occupied enhancer sites that regulate the Wnt pathway, neural differentiation, and embryonic organ development, implicating AR in dysfunctional cell lineage commitment. Our findings have direct clinical implications given the widespread availability of FDA-approved androgen-targeted agents used for prostate cancer.


Asunto(s)
Antagonistas de Receptores Androgénicos , Tumor Desmoplásico de Células Pequeñas Redondas , Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos , Animales , Línea Celular Tumoral , Tumor Desmoplásico de Células Pequeñas Redondas/genética , Humanos , Masculino , Oligonucleótidos Antisentido/farmacología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
NPJ Precis Oncol ; 6(1): 21, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379887

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.

11.
Cancer Discov ; 12(6): 1580-1597, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35348629

RESUMEN

The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of fibroblasts as part of the host response to cancer. Using single-cell RNA sequencing, multiplex immunostaining, and several genetic mouse models, we identify carcinoma-associated fibroblasts (CAF) with opposing functions in PDAC progression. Depletion of fibroblast activation protein (FAP)+ CAFs results in increased survival, in contrast to depletion of alpha smooth muscle actin (αSMA)+ CAFs, which leads to decreased survival. Tumor-promoting FAP+ CAFs (TP-CAF) and tumor-restraining αSMA+ CAFs (TR-CAF) differentially regulate cancer-associated pathways and accumulation of regulatory T cells. Improved efficacy of gemcitabine is observed when IL6 is deleted from αSMA+ CAFs but not from FAP+ CAFs using dual-recombinase genetic PDAC models. Improved gemcitabine efficacy due to lack of IL6 synergizes with anti-PD-1 immunotherapy to significantly improve survival of PDAC mice. Our study identifies functional heterogeneity of CAFs in PDAC progression and their different roles in therapy response. SIGNIFICANCE: PDAC is associated with accumulation of dense stroma consisting of fibroblasts and extracellular matrix that regulate tumor progression. Here, we identify two distinct populations of fibroblasts with opposing roles in the progression and immune landscape of PDAC. Our findings demonstrate that fibroblasts are functionally diverse with therapeutic implications. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Fibroblastos/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/uso terapéutico , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Nat Commun ; 13(1): 42, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013211

RESUMEN

Owing to a lack of response to the anti-PD1 therapy for most cancer patients, we develop a network approach to infer genes, pathways, and potential therapeutic combinations that are associated with tumor response to anti-PD1. Here, our prediction identifies genes and pathways known to be associated with anti-PD1, and is further validated by 6 CRISPR gene sets associated with tumor resistance to cytotoxic T cells and targets of the 36 compounds that have been tested in clinical trials for combination treatments with anti-PD1. Integration of our top prediction and TCGA data identifies hundreds of genes whose expression and genetic alterations that could affect response to anti-PD1 in each TCGA cancer type, and the comparison of these genes across cancer types reveals that the tumor immunoregulation associated with response to anti-PD1 would be tissue-specific. In addition, the integration identifies the gene signature to calculate the MHC I association immunoscore (MIAS) that shows a good correlation with patient response to anti-PD1 for 411 melanoma samples complied from 6 cohorts. Furthermore, mapping drug target data to the top genes in our association prediction identifies inhibitors that could potentially enhance tumor response to anti-PD1, such as inhibitors of the encoded proteins of CDK4, GSK3B, and PTK2.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores , Terapia Combinada/métodos , Redes Reguladoras de Genes , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Quinasa 4 Dependiente de la Ciclina , Quinasa 1 de Adhesión Focal , Glucógeno Sintasa Quinasa 3 beta , Antígenos de Histocompatibilidad Clase I , Humanos , Melanoma/terapia , Medicina de Precisión , Receptor de Muerte Celular Programada 1 , Linfocitos T Citotóxicos/metabolismo
13.
Mol Ther Methods Clin Dev ; 22: 360-376, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514028

RESUMEN

Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.

14.
Acta Neuropathol ; 142(3): 565-590, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34283254

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.


Asunto(s)
Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neoplasias del Sistema Nervioso Periférico/tratamiento farmacológico , Neoplasias del Sistema Nervioso Periférico/genética , Complejo Represivo Polycomb 2/genética , Animales , Biomarcadores de Tumor , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diferenciación Celular/genética , Línea Celular Tumoral , Perros , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Transgénicos , Mutación , Neoplasias de la Vaina del Nervio/patología , Cresta Neural/patología , Neoplasias del Sistema Nervioso Periférico/patología , Especificidad de la Especie , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
15.
Genome Biol ; 21(1): 271, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148332

RESUMEN

BACKGROUND: Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. RESULTS: We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. CONCLUSIONS: Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity.


Asunto(s)
Terapia de Inmunosupresión , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Metilación de ADN , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Inmunohistoquímica , Ratones , Mutación , Transcriptoma , Secuenciación del Exoma
16.
Adv Exp Med Biol ; 1258: 21-36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32767232

RESUMEN

Conventional osteosarcoma (OS) is a high-grade intraosseous malignancy with production of osteoid matrix; however, a deeper dive into the underlying genetics reveals genomic complexity and instability that result in significant tumor heterogeneity. While early karyotyping studies demonstrated aneuploidy with chromosomal complexity and structural rearrangements, further investigations have identified few recurrent genetic alterations with the exception of the tumor suppressors TP53 and RB1. More recent studies utilizing next-generation sequencing (NGS; whole-exome sequencing, WES; and whole-genome sequencing, WGS) reveal a genomic landscape predominantly characterized by somatic copy number alterations rather than point/indel mutations. Despite its genomic complexity, OS has shown variable immune infiltrate and limited immunogenicity. In the current chapter, we review the hallmarks of OS genomics across recent NGS studies and the immune profile of OS including a large institutional cohort of OS patients with recurrent and metastatic disease. Understanding the genomic and immune landscape of OS may provide opportunities for translation in both molecularly targeted therapies and novel immuno-oncology approaches.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Genoma Humano/genética , Genómica , Osteosarcoma/genética , Osteosarcoma/inmunología , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación
17.
J Thorac Dis ; 12(5): 1952-1959, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32642098

RESUMEN

BACKGROUND: Multiple synchronous lung tumors (MSLT), particularly within a single lobe, represent a diagnostic and treatment challenge. While histologic assessment was once the only method to possibly distinguish multiple primary lung cancers, there is a growing interest in identifying unique genomic features or mutations to best characterize these processes. METHODS: In order to differentiate multiple primary lung malignancies from intrapulmonary metastases in patients with MSLT, we performed whole exome sequencing (WES) on 10 tumor samples from 4 patients with MSLT. RESULTS: Shared mutations between tumors from the same patient varied from 0-91%. Patient 3 shared no common mutations; however, in Patients 2 and 4, identical mutations were identified among all tumors from each patient, suggesting that the three tumors identified in Patient 3 represent separate primary lung cancers, while those of Patients 1, 2 and 4 signify hematogenous and lymphatic spread. CONCLUSIONS: A high proportion of shared mutations between different lung tumors is likely indicative of intrapulmonary metastatic disease, while tumors with distinct genomic profiles likely represent multiple primary malignancies driven by distinct molecular events. Application of genomic profiling in the clinical setting may prove to be important to precise management of patients with MSLT.

18.
Materials (Basel) ; 13(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151091

RESUMEN

In this study, the effect of wall thickness (15-25 mm) on the stress-strain response of hollow-cylinder rubber fenders were investigated by conducting monotonic compression tests. It was found that a progressive increase in lateral bending deformation was observed during monotonic compression. Simultaneously, the extent of the lateral deflection decreased notably with an increasing wall thickness. From the experimental results, the fact is accepted that buckling occurred in the tested fender due to the fact that the ratio of the height to the wall thickness was higher than four in all of the considered cases. Moreover, an s-shape profile appeared in the stress-strain curves, which became clearer as the wall thickness was reduced from 25 to 15 mm. To assess the performance of fenders objectively, an energy-effectiveness index, C E R , was introduced to quantify the energy absorption capacity of the fender. From the experimental observations, it was inferred that the contact area of the folded inner surface of the fender produced under compression generated an additional reaction force and affected the shape of the stress-strain curve since the measured load consisted of two reaction forces: one caused by the self-contact area, and the other resulted from the compression-bending deformation that occurred in the side wall of the fender. To examine this assertion, a finite element analysis (FEA) was conducted and confirmed the effect of the reaction force on the sensitivity of the s-shape characteristic of the stress-strain curve. Finally, a polynomial regression was conducted and the calculated results based on the fourth-degree stress polynomial function correlated very well with the measured stress-strain curves.

19.
Nat Commun ; 11(1): 1008, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081846

RESUMEN

Limited clinical activity has been seen in osteosarcoma (OS) patients treated with immune checkpoint inhibitors (ICI). To gain insights into the immunogenic potential of these tumors, we conducted whole genome, RNA, and T-cell receptor sequencing, immunohistochemistry and reverse phase protein array profiling (RPPA) on OS specimens from 48 pediatric and adult patients with primary, relapsed, and metastatic OS. Median immune infiltrate level was lower than in other tumor types where ICI are effective, with concomitant low T-cell receptor clonalities. Neoantigen expression in OS was lacking and significantly associated with high levels of nonsense-mediated decay (NMD). Samples with low immune infiltrate had higher number of deleted genes while those with high immune infiltrate expressed higher levels of adaptive resistance pathways. PARP2 expression levels were significantly negatively associated with the immune infiltrate. Together, these data reveal multiple immunosuppressive features of OS and suggest immunotherapeutic opportunities in OS patients.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Osteosarcoma/genética , Osteosarcoma/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Óseas/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Fenómenos Inmunogenéticos , Masculino , Persona de Mediana Edad , Mutación , Osteosarcoma/secundario , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Secuenciación Completa del Genoma , Adulto Joven
20.
Materials (Basel) ; 12(2)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654533

RESUMEN

The study was devoted to the observation and modeling the mechanical behaviors of a hybrid SBR/NR (Styrene-Butadiene/Natural Rubber) hybrid vulcanized rubber fender under monotonic/cyclic compression. In experimental observations of the monotonic compression tests, it was found that lateral deformation occurred on the tested fender and was more significant with increasing the extent of the compressive strain. The relationship between the transmission stress S c and the compressive strain e c was nonlinear and the absorbed strain-energy-density was increased monotonically with the increment of the compressive strain. Among all cyclic compression tests with strain controlled, the reductions in both the stress range and the absorbed strain-energy-density up to the ten-thousandth cycle were found and then both of the cyclic properties remain approximately constant in the following compression cycles. Two new properties, the softening factor and the energy reduction factor, were introduced to quantify the effect of the strain range on the extent of the reduction in stress range and that on the absorbed strain-energy-density, respectively. It was found that both of the calculated values of the new properties increase with the increment of strain range. In mathematical modeling of the relationship between the transmission stress and the compressive strain, a new approach based on energy-polynomial-function E s ( e c ) was presented and was successfully used to simulate the monotonic curve and the stable hysteresis loop curves of the tested rubber fender in compression. Essentially, the energy-polynomial-function E s ( e c ) was obtained by performing a polynomial regression on a large amount of ( e c , E s ) data. Moreover, the least-square approach was applied to determine the corresponding regression coefficients in E s ( e c ) . Clearly, the stress-polynomial-function in modeling the S c - e c curve could be obtained from the differentiation of the energy-polynomial-function with respect to the compressive strain. In addition, to provide an adequate estimation of the mechanical properties of the cylindrical rubber fender under compression, the named cyclic stress-strain curve and cyclic energy-strain curve were developed and also modeled in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA