Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Microbiol ; 23(1): 39, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36765272

RESUMEN

Probiotics are defined as live microbial food elements that are beneficial to human health. Lacticaseibacillus casei T1 was considered to have potential as a bioactive ingredient in functional foods, which was isolated from kurut. Previous research by our group proved that L. casei T1 could prevent inflammatory responses caused by Helicobacter pylori. This study aimed to investigate whether treatment with L. casei T1 resulted in a suppressive effect on H. pylori-induced oxidative stress and inflammatory responses. The results showed that treatment with L. casei T1 could relieve H. pylori-induced overexpression of inflammatory cytokines in GES-1 cells. Experiments in animals suggested that taking long-term L. casei T1 could reduce oxidative stress and inflammatory cytokines and improve H. pylori-induced gastric mucosal damage. Furthermore, taking L. casei T1 could increase the relative abundance of beneficial intestinal bacterium (Lachnospiraceae and Odoribacter) of H. pylori-infected mice and help in maintaining the balance of intestinal microflora.Collectively, L. casei T1 had certain degrees of therapeutic effect against H. pylori. In the future, it combined with antibiotics for H. pylori eradication deserves further study.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Lacticaseibacillus casei , Probióticos , Ratones , Humanos , Animales , Lacticaseibacillus , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/microbiología , Citocinas , Probióticos/farmacología , Probióticos/uso terapéutico , Inflamación
2.
Food Chem ; 392: 133229, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35679723

RESUMEN

The anti-inflammatory effect of different sourced honeys and the impact on elderly gut microbiota were studied in terms of chemical compositions, anti-inflammatory effect and gut microbiota modulating capacities. All four honeys suppressed the production of pro-inflammatory markers NO, IL-1ß and IL-6 induced by lipopolysaccharide and promoted the expression of anti-inflammatory cytokines IL-10 in RAW 264.7 cells. Moreover, in the ex vivo batch gut model using elderly fecal microbiota (referred to as microcosm), it was showed that the addition of honeys increased the abundance of beneficial lactobacilli, decreased the abundance of potentially harmful Gram negative enteric bacteria, and exerted a beneficial effect on the production of short chain fatty acids. The concentration of gallic acid in honeys was positively correlated with the expression level of IL-10 and the abundance of lactobacilli. These findings indicate honeys with anti-inflammatory capacity have great potential for regulating the elderly gut microbiota which would lead to health benefits.


Asunto(s)
Microbioma Gastrointestinal , Miel , Anciano , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Ácidos Grasos Volátiles/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Lactobacillus/metabolismo
3.
Ann Transl Med ; 10(4): 176, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35280408

RESUMEN

Background: Reactive oxygen species (ROS)-induced oxidative stress (OS) and hyper-proliferation of gastric epithelial cells (GECs) due to Helicobacter pylori (Hp) infection are important mechanisms that lead to gastric carcinoma. Phycocyanin is a marine functional food additive with antioxidant and anti-inflammatory properties. Methods: The flow cytometry was used to detect the effect of 150 µM phycocyanin intervention on the cell cycle of human gastric adenocarcinoma cell line (AGS) infected with Hp. The transcriptomics of AGS cells intervened by 150 µM phycocyanin for 24 h and infected by Hp were detected. Differential gene expression analysis was performed using a cutoff at the normalized gene expression (log2) of 2 and a P-value of <0.05. Comparisons of the transcriptomes were made between the following groups: (I) AGS cells not infected with Hp and not using phycocyanin action and AGS cells infected with Hp only; (II) AGS cells not infected with Hp and not using phycocyanin action and AGS cells infected with phycocyanin action only; and (III) AGS cells infected with Hp only and phycocyanin treated and infected with Hp cells. c-myc and CyclinD1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting. Phosphorylation and non-phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 Mitogen-activated protein kinase (p38MAPK) were detected by immunoblotting. Intracellular ROS was detected by immunofluorescence. Results: Phycocyanin alleviates the Hp infection-induced increased cell viability and expression of cell cycle regulatory proteins c-myc and CyclinD1. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the differentially expressed genes in phycocyanin-treated Hp-infected AGS cells were most significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway. Phycocyanin could inhibit the Hp infection-induced phosphorylation of JNK, ERK, and p38MAPK and reduce the level of cellular ROS. Conclusions: This study suggests that phycocyanin can regulate the ROS/MAPK signaling pathway and reduce c-myc and CyclinD1 expression to inhibit the hyper-proliferation of AGS cells. Phycocyanin may serve as an inhibitor of malignant progression of Hp infection-induced gastric disease.

4.
Pak J Pharm Sci ; 34(2): 493-498, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34275821

RESUMEN

P. petiolosa as a typical Chinese herbal medicine has been generally utilized as Chinese native medicine formulation for treatment of chronic bronchitis, bronchial asthma and pneumoconiosis. The objective of this study was to evaluate the anti-inflammatory and antibacterial activities of P. petiolosa ethyl acetate extract (PPEAE) against S. aureusin mice. In our study, mice were infected pneumonia by S. aureus, colonization of S. aureus in lung tissue was calculated and the number of white blood cells (WBC) in blood was measured. Meanwhile, the hematoxylin-eosin staining (H&E) was observed and the Real-time PCR was employed to determine the relative mRNA expression. The results showed that, after treated with PPEAE the wet/dry (W/D) weight ratio and the number of WBC decreased dramatically, the number of S. aureus was significantly reduced. Furthermore, H&E staining showed that PPEAE obviously relieved the inflammation of infected mice and real-time PCR results indicated that PPEAE significantly down regulated the inflammatory iNOS, TNF-α and up regulated the anti-inflammatory HO-1 mRNA. In summary, our study revealed that application of crude product PPEAE had prominent antibacterial activity against S. aureus. PPEAE significantly reduced the biomass of S. aureus and effectively relieved the inflammation of S. aureus-induced pneumonia.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Pulmón/efectos de los fármacos , Extractos Vegetales/farmacología , Neumonía Estafilocócica/genética , Polypodiaceae , Staphylococcus aureus/efectos de los fármacos , Animales , Hemo-Oxigenasa 1/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Inflamación/genética , Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Ratones , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Neumonía Estafilocócica/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética
5.
Front Microbiol ; 11: 609734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343554

RESUMEN

Lactobacillus fermentum PC1 with proven probiotic properties was used to ferment oats with added honey to develop a probiotic beverage with enhanced bioactive ingredients. The viable Lactobacilli were enumerated during the fermentation and storage at 4°C, as well as after exposure to simulated gastrointestinal tract conditions. Good survival was noted both during storage as well as when exposed to the in vitro digestive tract conditions. Comparative analysis of the antioxidant activity, total phenolic content, and phenolic composition indicated fermentation improved the total antioxidant capacity and phenolic acid concentration. An increase of more than 50% of gallic acid, catechin, vanillic acid, caffeic acid, p-coumaric acid, and ferulic acid was observed in the methanol extracts. Moreover, no significant decrease in the ß-glucan content was noted during fermentation and storage. In conclusion, this fermented product has a great potential as a functional food with enhanced probiotic survival and increased bioactive ingredients.

6.
Life Sci ; 259: 118200, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758621

RESUMEN

AIMS: Diet is one of the factors affecting the pathogenicity of Helicobacter pylori (H. pylori) infection. Choline is a dietary component that is crucial for normal cellular function. However, choline intake imbalance can lead to liver injury, inflammation, and changes of the gut microbiota composition. The study aimed to explore the effects of choline supplementation on liver biology, gut microbiota, and inflammation in H. pylori-infected mice. MAIN METHODS: Liver function was detected by biochemical and histopathological analysis. Serum inflammatory markers were measured using ELISA. Fecal microbial profiles were determined via 16S rRNA sequencing. KEY FINDINGS: The results showed that choline supplementation decreased serum LDL level, while increased the activities of serum AST and ALT in normal BALB/c mice. Besides, choline also reduced hepatic SOD and GSH-Px activities, and elevated hepatic MDA level of H. pylori-infected mice. Moreover, choline markedly enhanced the concentrations of inflammatory factors including LPS, CRP, IL-6, TNF-α, and CXCL1 in H. pylori-infected mice. Meanwhile, choline and H. pylori cotreatment altered the richness and diversity of the mice gut microbiota, and increased the relative abundance of Escherichia_Shigella, which had a significant positive correlation with the levels of LPS, CRP, IL-6, TNF-α and CXCL1. SIGNIFICANCE: Our data suggest, for the first time, that choline can aggravate H. pylori-induced inflammation, which may be associated with the alterations of gut microbiota. This study may provide novel insights into the possible effects of food-derived choline on H. pylori infection-related diseases.


Asunto(s)
Colina/efectos adversos , Suplementos Dietéticos/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Infecciones por Helicobacter/microbiología , Helicobacter pylori , Hígado/efectos de los fármacos , Animales , LDL-Colesterol/sangre , Dieta , Heces/microbiología , Femenino , Infecciones por Helicobacter/patología , Inflamación/sangre , Hígado/enzimología , Hígado/patología , Pruebas de Función Hepática , Ratones , Ratones Endogámicos BALB C , ARN Ribosómico 16S/genética
7.
Biochem Biophys Res Commun ; 524(1): 36-42, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31980170

RESUMEN

Gastric epithelial cells (GES-1) stimulated by Helicobacter pylori (H. pylori) would affect the expression of related genes and induce the immune response of the cells. Abnormal methylation of DNA was one of the main causes. The aim of this study was to investigate phosphoinositol-3-kinase adaptor protein 1(PIK3AP1), which was screened from the chip data as an immune gene candidate to against the inflammatory response of cells caused by H. pylori infection. PIK3AP1 plays a key role in PI3K/AKT signaling pathway. The gene chip analysis and experimental results confirmed that PIK3AP1 expression was downregulated and PIK3AP1 promoter was hypermethylated after H. pylori stimulation in GES-1 cells. Meanwhile, the expression level of PIK3AP1 was significantly upregulated after 5-aza-dc treatment, and its expression was higher after 5-aza-dc and H. pylori co-treatment than that of H. pylori treatment but lower than that of 5-aza-dc treatment. Therefore, hypermethylation was the main reason for the down-regulation of PIK3AP1 after H. pylori stimulation. In addition, the intervention of PIK3AP1 inhibited the expression of downstream gene AKT, and suppressing the expression of the immunoinflammatory gene IL-6 in GES-1 cells. Furthermore, the intervention of PIK3AP1 would promote cell proliferation. In summary, hypermethylation of the PIK3AP1 promoter was accompanied by reduction of the expression level of PIK3AP1 in GES-1 cells by H. pylori stimulation. The expression of PIK3AP1, AKT, and IL-6 genes was positively correlated, Meanwhile, the PIK3AP1 can affect the proliferation of GES-1 cells. These results would be helpful to understand the innate immune response function of PIK3AP1 to pathogenic bacterial infection in the stomach.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Decitabina/química , Células Epiteliales/metabolismo , Mucosa Gástrica/citología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular , Metilación de ADN , Decitabina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
8.
Pak J Pharm Sci ; 33(5): 2047-2052, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33824112

RESUMEN

P. petiolosa as a typical Chinese herbal medicine has been generally utilized as Chinese native medicine formulation for treatment of chronic bronchitis, bronchial asthma and pneumoconiosis. The objective of this study was to evaluate the anti-inflammatory and antibacterial activities of P. petiolosa ethyl acetate extract (PPEAE) against S. aureus in mice. The air-dried leaves were extracted with ethyl acetate, mice were infected pneumonia by S. aureus. Colonization of S. aureus in lung tissue was calculated by plate colony count. The number of white blood cells (WBC) in blood was measured by blood cell automatic analyzer. The histopathological analysis of hematoxylin-eosin staining (H&E) of lung tissue was observed under microscope. Real-time PCR assay was employed to determine the relative mRNA expression of HO-1, iNOS and TNF-α. The results showed that, compared with control, after treated with PPEAE the wet/dry (W/D) weight ratio of mice lung tissue (decreased from 5.371 to 4.9) and the number of white blood cells (WBC) (decreased by 3.13×109/mL) decreased dramatically. The number of S. aureus was significantly reduced (from 1.93×105 CFU/mL to 26×103 CFU/mL) in lung tissue after treated with PPEAE. Furthermore, H&E staining showed that PPEAE obviously relieved the inflammation of lung tissue of infected mice. Meanwhile, real-time PCR results indicated that PPEAE down regulated the expression of inflammatory iNOS, TNF-α mRNA and up regulated the expression of anti-inflammatory HO-1 mRNA. In summary, this study revealed that application of crude product PPEAE had prominent antibacterial activity against S. aureus. PPEAE significantly reduced the biomass of S. aureus in lung tissue and effectively relieved the inflammation of S. aureus-induced pneumonia.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Pulmón/efectos de los fármacos , Extractos Vegetales/farmacología , Neumonía Estafilocócica/tratamiento farmacológico , Polypodiaceae , Staphylococcus aureus/efectos de los fármacos , Acetatos/química , Animales , Antibacterianos/aislamiento & purificación , Antiinflamatorios/aislamiento & purificación , Carga Bacteriana , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Neumonía Estafilocócica/metabolismo , Neumonía Estafilocócica/microbiología , Polypodiaceae/química , Solventes/química , Staphylococcus aureus/crecimiento & desarrollo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Int Immunopharmacol ; 81: 106026, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31759863

RESUMEN

Diet is one of the factors contributing to symptom of Helicobacter pylori (H. pylori) infection. Trimethylamine N-oxide (TMAO), a diet-related microbial metabolite, is associated with inflammatory and metabolic diseases. The aim of this study is to investigate the effects of TMAO intake on inflammation and gut microbiota composition in H. pylori-infected mice via 16S rRNA sequencing and biochemical analyses. The in vitro experiments showed that TMAO not only increased the expression of growth- and metabolism-associated genes and the urease activity of H. pylori, but increased the production of virulence factors. Moreover, TMAO intake increased the production of inflammatory markers and reduced the richness and diversity of the gut microbiota in H. pylori-infected mice. Further analysis showed that TMAO increased the relative abundance of Escherichia_Shigella in H. pylori-infected mice, which had positive correlation with the levels of LPS, CRP, and CXCL1. Collectively, our results suggest that TMAO may aggravate H. pylori-induced inflammation by increasing the viability and virulence of H. pylori and may aggravate inflammation in association with the gut microbiota in H. pylori-infected mice. This study may provide a novel insight into the mechanism for the effect of diet-derived metabolites such as TMAO on H. pylori-induced disease development.


Asunto(s)
Conducta Alimentaria/fisiología , Gastritis/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/patogenicidad , Metilaminas/inmunología , Animales , Línea Celular , ADN Bacteriano/aislamiento & purificación , Modelos Animales de Enfermedad , Escherichia/inmunología , Escherichia/aislamiento & purificación , Femenino , Mucosa Gástrica/citología , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Gastritis/microbiología , Gastritis/patología , Microbioma Gastrointestinal/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Humanos , Ratones , Viabilidad Microbiana/inmunología , ARN Ribosómico 16S/genética , Shigella/inmunología , Shigella/aislamiento & purificación , Virulencia/inmunología
10.
Folia Microbiol (Praha) ; 63(6): 669-676, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29728998

RESUMEN

Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.


Asunto(s)
Inmunidad Innata , FN-kappa B/metabolismo , Proteínas de Unión al ARN/metabolismo , Salmonella enteritidis/fisiología , Transducción de Señal , Transactivadores/metabolismo , Biomarcadores , Células CACO-2 , Células Cultivadas , Expresión Génica , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación , Modelos Biológicos , Proteínas de Unión al ARN/genética , Infecciones por Salmonella/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Transactivadores/genética
11.
Biochem Biophys Res Commun ; 495(2): 1573-1579, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222050

RESUMEN

Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection.


Asunto(s)
Infecciones por Helicobacter/inmunología , Helicobacter pylori , Proteínas de Unión al ARN/inmunología , Transactivadores/inmunología , Animales , Línea Celular , Quimiocina CXCL2/genética , Regulación hacia Abajo , Femenino , Gastritis/genética , Gastritis/inmunología , Gastritis/patología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Helicobacter pylori/genética , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Hemo-Oxigenasa 1/genética , Humanos , Inmunidad Innata/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Proteínas de Unión al ARN/genética , Receptor Toll-Like 2/genética , Transactivadores/genética , Regulación hacia Arriba
12.
Cell Biol Int ; 41(8): 871-878, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28618119

RESUMEN

To study differential expressions of KH-type splicing regulatory protein (KSRP) and inflammatory factors and to explore the relationship between them in Lipopolysaccharide (LPS)-induced gastric epithelial cells (GES-1), cells were exposed to LPS for 24 h in the presence or absence of SC-514. Western blot and real-time PCR (RT-PCR) were used to analysis the contents of KSRP, inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). The results showed that LPS decreased the expression of KSRP protein in GES-1 cells, but not KSRP mRNA, while increasing the levels of iNOS and COX-2 proteins and mRNAs in GES-1cells. High expression of KSRP induced low expressions and stabilities of iNOS and COX-2 in GES-1 cells, indicated that KSRP protein presented negative correlation with iNOS and COX-2 with LPS stimulation. In conclusion, the regulation of expression of KSRP was mainly achieved through post-translational modification. KSRP protein participated in regulating the expression of iNOS and COX-2 in their transcription and translation levels. In response to LPS or gram negative pathogenic microorganism, KSRP could regulate Toll-like receptor (TLR)/ Nuclear factor-kappa B (NF-κB) signal pathway in GES-1 cells.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Transactivadores/metabolismo , Transactivadores/fisiología , Ciclooxigenasa 2 , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Tiofenos , Transactivadores/genética , Factores de Transcripción/metabolismo
13.
Technol Cancer Res Treat ; 16(1): 112-119, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28100163

RESUMEN

Aurora kinase B, playing a vital, important role in mitosis, is frequently detected to be overexpressed in many cancer cell lines and various tumor tissues, including prostatic carcinoma. Given the essential function of Aurora kinase B in mitosis and its association with tumorigenesis, it might be a drug target for prostatic carcinoma treatment. In our study, short hairpin RNA targeting Aurora kinase B was cloned into a pGPU6 plasmid vector and then transfected into human prostatic carcinoma cells. The expression level of Aurora kinase B was verified by reverse transcription-polymerase chain reaction and Western blot. At the same time, cell apoptosis was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, fluorescent staining, and flow cytometric analysis. Furthermore, prostate carcinoma cells were injected into mice to establish a tumor xenograft model. Previous studies have shown the effect of pGPU6-shAURKB plasmid on tumor growth in a prostate carcinoma xenogenic implantation model. From the study, we knew that the Aurora kinase B was significantly downregulated in prostate carcinoma cells, and cell apoptosis was also detected higher in treated groups than that in control groups. Moreover, in the prostate carcinoma xenogenic implantation model, compared with the control groups, the tumor growth was inhibited about 78.7% in the pGPU6-shAURKB plasmid-treated group, and cell apoptosis in the experimental group was notably higher than that in control groups. The average duration of tumor-bearing mice was prolonged to about 35 days. The results of experiment indicated that specific knockdown of Aurora kinase B led to prostate carcinoma cells apoptosis and inhibited tumor growth. Our data clearly confirmed that specific knockdown of Aurora kinase B expression by vector-based short hairpin RNA/liposome may be a potential new approach to treat human prostatic carcinoma.


Asunto(s)
Aurora Quinasa B/genética , Vectores Genéticos/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Transfección , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Prod Res ; 31(11): 1347-1350, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27784177

RESUMEN

The aim of this study was to explore the antibacterial activity of Pyrrosia petiolosa ethyl acetate extract (PPEAE) against Staphylococcus aureus in vitro and analyse its chemical components by gas chromatograph-mass spectrometry. The results of anti-microbial assay revealed that PPEAE had strong inhibitory activity against S .aureus, with MIC and MBC of 7.8 and 15.6 mg/mL, respectively. The transcriptional levels of hla and sea were reduced to 14.33 and 46.39% at the MIC compared to the control. Analysing test result exhibited that eugenol made a great contribution to antibacterial activity. This experiment indicated that PPEAE had prominent antibacterial activity against S. aureus.


Asunto(s)
Antibacterianos/aislamiento & purificación , Extractos Vegetales/farmacología , Polypodiaceae/química , Staphylococcus aureus/efectos de los fármacos , Virulencia/genética , Acetatos , Antibacterianos/química , Antibacterianos/farmacología , Regulación hacia Abajo , Eugenol/aislamiento & purificación , Eugenol/farmacología , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Staphylococcus aureus/genética
15.
Int Immunopharmacol ; 43: 172-178, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28012316

RESUMEN

Colonization of Helicobacter pylori (H. pylori) induces immune and inflammatory response in gastric mucosa. Trimethylamine N-oxide (TMAO), from diet and metabolite through the action of gut microbiota, has been linked to inflammatory diseases. To investigate the effects of TMAO and H. pylori infection on gene expression in gastric epithelial cells, Human gene chip Affymetrix HTA 2.0 was used in this study. 1312 genes were identified as differentially expressed genes in GES-1 cells with H. pylori and TMAO co-treatment compared to the control. GO and KEGG analyses indicated that the functions of these differentially expressed genes were related closely with immune inflammation. GO-network showed that Toll-like receptor signaling pathway was the most important biological processes and 49 up-regulated genes related to immune inflammation were obtained. The synergistic effects of H. pylori and TMAO enhanced the genes expression of IL-6, CXCL1, CXCL2, FOS and C3 related to immune inflammation in comparison with those of non-infected control cells, H. pylori-infected cells, and TMAO-stimulated cells. RT-PCR verified the expression levels of IL-6, CXCL1. Additionally, expression levels of 2053 genes were altered and 52 immunoinflammatory genes were upregulated in comparison with H. pylori-infected cells. This study suggested that TMAO altered the expression levels of immunoinflammatory genes induced by H. pylori infection, and the synergistic effects of H. pylori and TMAO provided novel insights into the development of chronic gastritis, gastric ulcer and gastric cancer.


Asunto(s)
Mucosa Gástrica/inmunología , Infecciones por Helicobacter/genética , Helicobacter pylori/inmunología , Inflamación/genética , Metilaminas/metabolismo , Línea Celular , Quimiocina CXCL1/genética , Mucosa Gástrica/microbiología , Perfilación de la Expresión Génica , Infecciones por Helicobacter/inmunología , Humanos , Inmunomodulación , Interleucina-6/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética , Receptores Toll-Like/genética , Regulación hacia Arriba
16.
Environ Toxicol Pharmacol ; 47: 159-164, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27694054

RESUMEN

In the study we made use of DOTAP (1,2-dioleoyl-3-trimethylammonium), DOPE (1,2-dioleoyl-snglycero-3-phosphoethanolamine) and PEG-PE (polyethylene glycol- polyethylene) to make cationic PEG-liposomes by ultrasonic dispersion method. The plasmid pGPU6 combined with cationic PEG-liposomes or Liopofectamin 2000 was used to transfect PC3 cells to judge the transfection efficiency. HE staining showed that the pGUP6-shAurora B plasmid/liposomes complex could significantly inhibit tumor growth in mice tumor model. The results indicated that there was no remarkable difference between the homemade liposomes and Lipofectamin 2000 after transfection, with transfection efficiency over 80%. And the homemade liposomes also had high transfection efficiency in vivo. No significant side effects were observed on weight, coat condition, behavior or appetite and the life span of mice treated with pGPU6-shAurora B were extended. Beyond that, there were no differences in mortality or in pathological changes to the heart, liver, spleen, lungs and kidneys among all the mice.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Liposomas/farmacología , Liposomas/toxicidad , Neoplasias de la Próstata/genética , Transfección/métodos , Animales , Aurora Quinasa B/administración & dosificación , Aurora Quinasa B/genética , Cationes/química , Línea Celular Tumoral , Ácidos Grasos Monoinsaturados/química , Femenino , Humanos , Liposomas/química , Masculino , Ratones Endogámicos BALB C , Tamaño de la Partícula , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Neoplasias de la Próstata/patología , Compuestos de Amonio Cuaternario/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Microb Pathog ; 98: 63-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27364547

RESUMEN

Helicobacter pylori (H. pylori) is a spiral shaped gram-negative bacterium that induces immune responses in the gastric mucosa. Toll-like receptors (TLRs) play important roles in mediating inflammatory cytokines by recognition of conserved molecular patterns on bacteria. Changes in the expression of toll-like receptor (TLR) 2, TLR4 and the relative inflammatory cytokines were analyzed in normal gastric epithelial GES-1 cells following treatment with H. pylori or Escherichia coli lipopolysaccharide (E. coli LPS) in order to investigate the contribution of TLRs in recognizing and mediating the inflammatory response to H. pylori, and study the differences in TLRs' performance between H. pylori and E. coli. Specific inhibitors for the declines in TLR2 and TLR4 were also employed. The results showed that H. pylori infection increased TLR2 expression in GES-1 cells, but TLR4 remained unchanged regardless of H. pylori or TLR2 small interfering RNA treatment. Furthermore, the secretion of cyclooxygenase-2 (COX-2) induced by H. pylori was inhibited by declines in TLR2, but not in TLR4. In conclusion, TLR2 plays an even more important role than TLR4 not only in recognizing H. pylori, but also in the induction of inflammatory cytokines initiated by H. pylori. However, both TLR2 and TLR4 are necessary in mediating the inflammatory response to E. coli LPS.


Asunto(s)
Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Helicobacter pylori/inmunología , FN-kappa B/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Escherichia coli/inmunología , Perfilación de la Expresión Génica , Humanos , Lipopolisacáridos/inmunología , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA