Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ISA Trans ; 151: 258-284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851927

RESUMEN

The periodical impulses caused by localized defects of components are the vital characteristic information for fault detection and diagnosis of rotating machines. In recent years, multitudinous spectrum analysis-based signal processing methods have been developed and authenticated as the powerful tools for excavating fault-related repetitive transients from the measured complex signals. Nonetheless, in practice, their applications can be severely confined by the constraints of limited system signal availability and incomplete information extraction under intricate noise interferences. To tackle the aforementioned issues, this paper proposes a periodic-modulation-oriented noise resistant correlation (PMONRC) method for target period detection and fault diagnosis of rotating machinery. Firstly, the envelope of raw signal is obtained via a novel sequential procedure of signal element-wise squaring, spectral Gini index-guided adaptive low-pass filtering, and signal element-wise square root computation, to highlight the modulated wave component that is more likely to be related to the potential fault-induced periods. Subsequently, a series of sub-signals, which can encode the fault-related repetitive information and enhance noise resistance, are constructed utilizing the envelope signal. Based upon the envelope signal and the obtained sub-signals, a weighted envelope noise resistant correlation function can be derived with the assistance of the L-moment ratio-based indicator and Sigmoid transformation. Finally, the specific fault type of the rotating machinery can be identified and affirmed accordingly. The proposed PMONRC method, which is nonparametric and completely adaptive to the signal being processed itself, overcomes the deficiencies of spectral analysis-based approaches, and is applicable for the engineering circumstances of system signal limitation and low signal-to-noise ratio (SNR), possessing immense practical merit. Both simulation analyses and experimental validations profoundly demonstrate that the proposed method is superior to other existing state-of-the-art time-domain correlation methods. Moreover, as an attempt as well as exemplar to apply this method, the PMONRC-based incipient fault diagnostic results of rolling bearing data from the well-known experimental platform PRONOSTIA are presented and discussed as well, to further elucidate the effectiveness and practical engineering significance of the proposed method.

2.
J Colloid Interface Sci ; 660: 657-668, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271802

RESUMEN

The electrically insulating and volumetric deformation of sulfur and the shuttle effect of the intermediate lithium polysulfide (LiPSs) have severely hindered the development of lithium-sulfur batteries (LSBs). Herein, a synergistic strategy of hierarchical porous nitrogen-doped carbon microspheres (PNCM) derived from low-cost biomass with surface-coated AlF3 nanolayer as a multifunctional sulfur host (denoted as PNCM@S@AlF3) was developed. The PNCM not only possesses an abundant pore structure, large surface area, and high electrical conductivity but also features an intrinsic N-doped and fluorinated framework, which effectively enhances the physical adsorption and chemical anchoring to LiPSs. In addition, the AlF3 nanolayer protects the open surface of the porous carbon to isolate sulfur species from the electrolyte to reduce irreversible losses while accelerating the redox kinetics of LiPSs through strong polar adsorption and bonding. Hence, the PNCM@S@AlF3 cathode exhibits an initial capacity as high as 1176.2 mAh/g at 0.2C, and the cycling stability and rate capability are superior to that of PNCM@S without AlF3 coating. Impressively, the PNCM@S@AlF3 cathode delivers stable long-term cycling performance at a high rate of 2C, with 95.6% capacity retention after 500 cycles. This work presents a facile, sustainable, and efficient synergistic strategy for developing advanced LSBs.

3.
Small ; 20(7): e2305980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800615

RESUMEN

Unclear reaction mechanisms and unsatisfactory power performance hinder the further development of advanced lithium/fluorinated carbon (Li/CFx ) batteries. Herein, the mechano-electrochemical coupling behavior of a CFx cathode is investigated by in situ monitoring strain/stress using digital image correlation (DIC) techniques, electrochemical methods, and theoretical equations. The DIC monitoring results present the distribution and dynamic evolution of the plane strain and indicate strong dependence toward the material structure and discharge rate. The average plane principal strain of fully discharged 2D fluorinated graphene nanosheets (FGNSs) at 0.5 C is 0.50%, which is only 38.5% that of conventional bulk-structure CFx . Furthermore, the superior structural stability of the FGNSs is demonstrated by the microstructure and component characterization before and after discharge. The plane stress evolution is calculated based on theoretical equations, and the contributions of electrochemical and mechanical factors are examined and discussed. Subsequently, a structure-dependent three-region discharge mechanism for CFx electrodes is proposed from a mechanical perspective. Additionally, the surface deformation of Li/FGNSs pouch cells formed during the discharge process is monitored using in situ DIC. This study reveals the discharge mechanism of Li/CFx batteries and facilitates the design of advanced CFx materials.

4.
Adv Mater ; 35(40): e2303444, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395554

RESUMEN

Fluorinated carbon (CFx ) is considered as a promising cathode material for lithium/sodium/potassium primary batteries with superior theoretical energy density. However, achieving high energy and power densities simultaneously remains a considerable challenge due to the strong covalency of the C-F bond in the highly fluorinated CFx . Herein, an efficient surface engineering strategy combining surface defluorination and nitrogen doping enables fluorinated graphene nanosheets (DFG-N) to possess controllable conductive nanolayers and reasonably regulated C-F bonds. The DFG-N delivers an unprecedented dual performance for lithium primary batteries with a power density of 77456 W kg-1 and an energy density of 1067 Wh kg-1 at an ultrafast rate of 50 C, which is the highest level reported to date. The DFG-N also achieves a record power density of 15 256 and 17 881 W kg-1 at 10 C for sodium and potassium primary batteries, respectively. The characterization results and density functional theory calculations demonstrate that the excellent performance of DFG-N is attributed to surface engineering strategies that remarkably improve electronic and ionic conductivity without sacrificing the high fluorine content. This work provides a compelling strategy for developing advanced ultrafast primary batteries that combine ultrahigh energy density and power density.

5.
Adv Healthc Mater ; 12(15): e2202826, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871175

RESUMEN

″Nano-metamaterials″, rationally designed novel class metamaterials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, are introduced into the area of drug delivery system (DDS), and the relationship between release profile and treatment efficacy at the single-cell level is revealed for the first time. Fe3+ -core-shell-corona nano-metamaterials (Fe3+ -CSCs) are synthesized using a dual-kinetic control strategy. The hierarchical structure of Fe3+ -CSCs, with a homogeneous interior core, an onion-like shell, and a hierarchically porous corona. A novel polytonic drug release profile occurred, which consists of three sequential stages: burst release, metronomic release, and sustained release. The Fe3+ -CSCs results in overwhelming accumulation of lipid reactive oxygen species (ROS), cytoplasm ROS, and mitochondrial ROS in tumor cells and induces unregulated cell death. This cell death modality causes cell membranes to form blebs, seriously corrupting cell membranes to significantly overcome the drug-resistance issues. It is first demonstrated that nano-metamaterials of well-defined microstructures can modulate drug release profile at the single cell level, which in turn alters the downstream biochemical reactions and subsequent cell death modalities. This concept has significant implications in the drug delivery area and can serve to assist in designing potential intelligent nanostructures for novel molecular-based diagnostics and therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Liberación de Fármacos , Especies Reactivas de Oxígeno/metabolismo , Nanoestructuras/química
6.
Adv Sci (Weinh) ; 10(4): e2205595, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36377475

RESUMEN

Increasingly intricate in their multilevel multiscale microarchitecture, metamaterials with unique physical properties are challenging the inherent constraints of natural materials. Their applicability in the nanomedicine field still suffers because nanomedicine requires a maximum size of tens to hundreds of nanometers; however, this size scale has not been achieved in metamaterials. Therefore, "nano-metamaterials," a novel class of metamaterials, are introduced, which are rationally designed materials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, investing in themselves remarkably unique and significantly enhanced material properties as compared with conventional nanomaterials. Microarchitectural regulation through conventional thermodynamic strategy is limited since the thermodynamic process relies on the frequency-dependent effective temperature, Teff (ω), which limits the architectural regulation freedom degree. Here, a novel dual-kinetic control strategy is designed to fabricate nano-metamaterials by freezing a high-free energy state in a Teff (ω)-constant system, where two independent dynamic processes, non-solvent induced block copolymer (BCP) self-assembly and osmotically driven self-emulsification, are regulated simultaneously. Fe3+ -"onion-like core@porous corona" (Fe3+ -OCPCs) nanoparticles (the products) have not only architectural complexity, porous corona and an onion-like core but also compositional complexity, Fe3+ chelating BCP assemblies. Furthermore, by using Fe3+ -OCPCs as a model material, a microstructure-biological performance relationship is manifested in nano-metamaterials.

7.
ACS Appl Mater Interfaces ; 14(48): 53788-53797, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36441596

RESUMEN

Low cycling Coulombic efficiency (CE) and messy Li dendrite growth problems have greatly hindered the development of anode-free Li-metal batteries (AFLBs). Thus, functional electrolytes for uniform lithium deposition and lithium/electrolyte side reaction suppression are desired. Here, we report a locally fluorinated electrolyte (LFE) medium layer surrounding Cu foils to tailor the chemical compositions of the solid-electrolyte interphase (SEI) in AFLBs for inhibiting the immoderate Li dendrite growth and to suppress the interfacial reaction. This LFE consists of highly concentrated LiTFSI dissolved in a fluoroethylene carbonate and/or succinonitrile plastic mixture. The CE of Cu||LiNi0.8Co0.1Mn0.1O2 (NCM811) AFLB increased to a high level of 99% as envisaged, and the cycling ability was also highly improved. These improvements are facilitated by the formation of a uniform, dense, and LiF-rich SEI. LiF possesses high interfacial energy at the LiF/Li interface, resulting in a more uniform Li deposition process as proved by density functional theory (DFT) calculation results. This work provides a simple yet utility tech for the enhancement of future high-energy-density AFLBs.

8.
Angew Chem Int Ed Engl ; 61(33): e202202559, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607251

RESUMEN

The heterogeneity in biofilms is a major challenge in biofilm therapies due to different susceptibility of bacteria and extracellular polymeric substances (EPS) to antibacterial agents. Here, we describe a therapeutic strategy that overcame biofilm heterogeneity, where antibacterial agent (NO) and EPS dispersant (reactive oxygen species (ROS)-inducing Fe3+ ) were separately loaded in the yolk and shell compartment of a yolk-shell nanoplatform. Compared with traditional combinational chemotherapies which suffer from inconsistent pharmacokinetics profiles, this strategy drew on the pharmacokinetic complementarity of ROS and NO, where ROS with a short diffusion distance and a high redox potential corrupted the EPS, facilitating NO, which has a long diffusion distance and a broad antimicrobial spectrum, to penetrate the biofilm and eliminate the resident bacteria. Additionally, the construction of a three-dimensional spherical biofilm model is novel and clinically relevant.


Asunto(s)
Antiinfecciosos , Biopelículas , Bacterias , Matriz Extracelular de Sustancias Poliméricas , Especies Reactivas de Oxígeno
9.
Sci Adv ; 7(44): eabi7203, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705505

RESUMEN

Centrifugal pumps are essential mechanical components for liquid delivery in many biomedical systems whose miniaturization can promote innovative disease treatment approaches. However, centrifugal pumps are predominately constructed by rigid and bulky components. Here, we combine the soft materials and flexible electronics to achieve soft magnetic levitation micropumps (SMLMs) that are only 1.9 to 12.8 grams in weight. The SMLMs that rotate at a rotation speed of 1000 revolutions per min to pump liquids with various viscosities ranging from 1 to 6 centipoise can be used in assisting dialysis, blood circulation, and skin temperature control because of excellent biocompatibility with no organ damage. The development of SMLMs not only demonstrates the possibility to replace rigid rotating structures with soft materials for handling large volumes of fluids but also indicates the potential for fully flexible artificial organs that may revolutionize health care and improve the well-being of patients.

10.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316527

RESUMEN

Cavitation failure often occurs in centrifugal pumps, resulting in severe harm to their performance and life-span. Nowadays, it has become crucial to detect incipient cavitation ahead of cavitation failure. However, most envelope demodulation methods suffer from strong noise and repetitive impacts. This paper proposes an adaptive Autogram approach based on the Constant False Alarm Rate (CFAR). A cyclic amplitude model (CAM) is presented to reveal the cyclostationarity and autocorrelation-periodicity of pump cavitation-caused signals. The Autogram method is improved for envelope demodulation and cyclic feature extraction by introducing the character to noise ratio (CNR) and CFAR threshold. To achieve a high detection rate, CNR parameters are introduced to represent the cavitation intensity in the combined square-envelope spectrum. To maintain a low false alarm, the CFAR detector is combined with the CNR parameter to obtain adaptive thresholds for different data along with sensor positions. By carrying out various experiments of a centrifugal water pump from Status 1 to 10 at different flow rates, the proposed approach is capable of cavitation feature extraction with respect to the CAM model, and can achieve more than a 90% detection rate of incipient cavitation and maintain a 5% false alarm rate. This paper offers an alternative solution for the predictive maintenance of pump cavitation.

11.
ISA Trans ; 57: 254-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25681018

RESUMEN

In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA