Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Cell Environ ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884189

RESUMEN

The identification of new genes involved in regulating cold tolerance in rice is urgent because low temperatures repress plant growth and reduce yields. Cold tolerance is controlled by multiple loci and involves a complex regulatory network. Here, we show that rice jacalin-related lectin (OsJRL) modulates cold tolerance in rice. The loss of OsJRL gene functions increased phenylalanine metabolism and flavonoid biosynthesis under cold stress. The OsJRL knock-out (KO) lines had higher phenylalanine ammonia-lyase (PAL) activity and greater flavonoid accumulation than the wild-type rice, Nipponbare (NIP), under cold stress. The leaves had lower levels of reactive oxygen species (ROS) and showed significantly enhanced cold tolerance compared to NIP. In contrast, the OsJRL overexpression (OE) lines had higher levels of ROS accumulation and showed lower cold tolerance than NIP. Additionally, the OsJRL KO lines accumulated more abscisic acid (ABA) and jasmonic acid (JA) under cold stress than NIP. The OsJRL OE lines showed increased sensitivity to ABA compared to NIP. We conclude that OsJRL negatively regulates the cold tolerance of rice via modulation of phenylalanine metabolism and flavonoid biosynthesis.

2.
Crit Rev Biotechnol ; : 1-22, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238104

RESUMEN

The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.

3.
Front Plant Sci ; 14: 1267281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023836

RESUMEN

The content of resistant starch (RS) was considered positively correlated with the apparent amylose content (AAC). Here, we analyzed two Indica rice mutants, RS111 and Zhedagaozhi 1B, similar in high AAC and found that their RS content differed remarkably. RS111 had higher RS3 content but lower RS2 content than Zhedagaozhi 1B; correspondingly, cooked RS111 showed slower digestibility. RS111 had smaller irregular and oval starch granules when compared with Zhedagaozhi 1B and the wild type. Zhedagaozhi 1B showed a B-type starch pattern, different from RS111 and the wild type, which showed A-type starch. Meantime, RS111 had more fa and fb1 but less fb3 than Zhedagaozhi 1B. Both mutants showed decreased viscosity and swelling power when compared with the parents. RS111 had the lowest viscosity, and Zhedagaozhi 1B had the smallest swelling power. The different fine structures of amylopectin between RS111 and Zhedagaozhi 1B led to different starch types, gelatinization properties, paste viscosity, and digestibility. In addition to enhancing amylose content, modifications on amylopectin structure showed great potent in breeding rice with different RS2 and RS3 content, which could meet the increasing needs for various rice germplasms.

4.
NPJ Sci Food ; 7(1): 56, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853069

RESUMEN

In this study, two rice varieties (RS4 and GZ93) with different amylose and lipid contents were studied, and their starch was used to prepare starch-palmitic acid complexes. The RS4 samples showed a significantly higher lipid content in their flour, starch, and complex samples compared to GZ93. The static in vitro digestion highlighted that RS4 samples had significantly lower digestibility than the GZ93 samples. The C∞ of the starch-lipid complex samples was found to be 17.7% and 18.5% lower than that of the starch samples in GZ93 and RS4, respectively. The INFOGEST undigested fractions were subsequently used for in vitro colonic fermentation. Short-chain fatty acids (SCFAs) concentrations, mainly acetate, and propionate were significantly higher in starch-lipid complexes compared to native flour or starch samples. Starch-lipid complexes produced a distinctive microbial composition, which resulted in different gene functions, mainly related to pyruvate, fructose, and mannose metabolism. Using Model-based Integration of Metabolite Observations and Species Abundances 2 (MIMOSA2), SCFA production was predicted and associated with the gut microbiota. These results indicated that incorporating lipids into rice starch promotes SCFA production by modulating the gut microbiota selectively.

5.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686436

RESUMEN

Organelles play core roles in living beings, especially in internal cellular actions, but the hidden information inside the cell is difficult to extract in a label-free manner. In recent years, terahertz (THz) imaging has attracted much attention because of its penetration depth in nonpolar and non-metallic materials and label-free, non-invasive and non-ionizing ability to obtain the interior information of bio-samples. However, the low spatial resolution of traditional far-field THz imaging systems and the weak dielectric contrast of biological samples hinder the application of this technology in the biological field. In this paper, we used an advanced THz scattering near-field imaging method for detecting chloroplasts on gold substrate with nano-flatness combined with an image processing method to remove the background noise and successfully obtained the subcellular-grade internal reticular structure from an Arabidopsis chloroplast THz image. In contrast, little inner information could be observed in the tea chloroplast in similar THz images. Further, transmission electron microscopy (TEM) and mass spectroscopy (MS) were also used to detect structural and chemical differences inside the chloroplasts of Arabidopsis and tea plants. The preliminary results suggested that the interspecific different THz information is related to the internal spatial structures of chloroplasts and metabolite differences among species. Therefore, this method could open a new way to study the structure of individual organelles.


Asunto(s)
Arabidopsis , Cintigrafía , Microscopía de Fuerza Atómica , Cloroplastos ,
6.
Environ Sci Technol ; 57(33): 12270-12279, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37561606

RESUMEN

Aquaculture ponds are an important artificial aquatic system for global food fish production but also are a hot spot of greenhouse gas (GHG) emissions. The GHG mitigation strategy and the underlying mechanism for aquaculture ponds are still poorly understood. In this study, we conducted a 2 year field experiment to determine the effects of planting high-stalk rice (an artificially bred emergent plant for ponds) on GHG emissions from aquaculture ponds. Our results showed that planting high-stalk rice reduced CH4 emission by 64.4% and N2O emission by 76.2% over 2 years. Planting high-stalk rice significantly increased the content of O2 and the abundance of pmoA in the sediment, thus prompting CH4 oxidation in the ponds. The reduction of N2O emission from ponds was attributed to the decreased inorganic nitrogen, amoA-B and nirS in the sediment induced by rice. Furthermore, high-stalk rice culture in the pond increased shrimp yields and gained rice yields, resulting in a significant reduction of yield-scaled global warming potential. Our findings suggest that breeding appropriate emergent aquatic plants is a potential pathway to mitigate GHG emission from aquaculture ponds with more food yields and economic benefits.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Animales , Gases de Efecto Invernadero/análisis , Estanques , Metano/análisis , Acuicultura/métodos , Óxido Nitroso/análisis , Agricultura/métodos , Suelo , China
7.
Carbohydr Polym ; 318: 121141, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479448

RESUMEN

SSIIIa was the key gene responsible for RS formation in rice endosperm. The higher RS content in ssIIIa mutant has been proposed to be majorly due to the increased amylose-lipid complexes (RS5). However, the formation of RS5 elicited by ssIIIa mutation and the importance of RS5 for total RS content in rice are still unclear. With japonica ssIIIa loss-of-function mutants created by CRISPR/Cas9 gene editing, the effects of SSIIIa mutation on RS5 were furtherly evaluated through investigating the transcriptome and metabolites. Inactivation of SSIIIa caused significant enhancement in amylose and RS content but without depletion in starch reserves. SSIIIa mutation modulated the genes involved in carbohydrate and lipid metabolisms and the redistribution of substances, led to accumulated protein, glucose, fructose, and C18:2. Besides the increased amylose content and altered amylopectin structure, the increased C18:2 contributed greatly to the enhancement in RS content in japonica ssIIIa mutants through complexing with amylose to form RS5, while the existence of lipid counted against the enhancement of RS content in indica rice. RS5 showed discrepant contributions for the total RS in rice with different genetic background. Inactivation of SSIIIa has great potential in improving RS5 content in japonica rice without great yield loss.


Asunto(s)
Oryza , Almidón , Oryza/genética , Amilosa , Amilopectina , Lípidos
8.
J Sci Food Agric ; 103(15): 7712-7720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37439262

RESUMEN

BACKGROUND: At present, increasing importance has been attracted to healthy food enriched in resistant starch (RS), which has great benefits in health-promoting. Raw potato has rich RS2, whereas most RS2 may become digestible after gelatinization, resulting in few RS being left in processed potato. Breeding potatoes with high RS2 or RS3 or both can meet the demand for various healthy potato products. RESULTS: There were apparent discrepancies among three potatoes with contrast RS2 and RS3 content in thermal properties, viscosity and digestibility. ZS-5 had the highest RS2 with 50.17% but the lowest RS3 with 3.31%. Meanwhile, ZS-5 had the largest starch granule, the highest proportion of B3, viscosity and hardness, and the highest digestibility. DN303 with the highest content of RS3 (5.08%) had the lowest hardness and fracturability. MG56-42 with both higher RS2 and RS3 content showed the highest resistance to digestion and moderate hardness and fracturability. CONCLUSION: The present study enriches the potential resources and provides a reliable scientific basis for high RS potatoes breeding. The various features of different potatoes make it possible to screen potatoes according to different demands. © 2023 Society of Chemical Industry.


Asunto(s)
Solanum tuberosum , Almidón , Almidón/química , Solanum tuberosum/genética , Fitomejoramiento , Almidón Resistente , Viscosidad
9.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126676

RESUMEN

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Oryza , Almidón Sintasa , Almidón Resistente/metabolismo , Oryza/genética , Almidón Sintasa/genética , Fitomejoramiento , Almidón , Amilosa , Proteínas de Plantas/genética
10.
Int J Biol Macromol ; 237: 124225, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990403

RESUMEN

D. alata is an important edible and medicinal plant in China. Its tuber is rich in starch but the understanding of the physiochemical properties of D. alata starch is limited. In order to explore the processing and application potential of different D. alata accessions in China, five kinds of D. alata starch (LY, WC, XT, GZ, SM) were isolated and characterized. The study showed that D. alata tubers contained abundant starch, enriched in amylose and resistant starch (RS). D. alata starches showed B-type or C-type diffraction pattern, had higher RS content and gelatinization temperature (GT), lower fa and viscosity when compared to D. opposita, D. esculenta, and D. nipponica. Among D. alata starches, D. alata (SM) showing the C-type diffraction pattern, had the lowest proportion of fa with 10.18 %, the highest amylose, RS2 and RS3 content of 40.24 %, 84.17 % and 10.48 % respectively, and the highest GT and viscosity. The results indicated that D. alata tubers are potential sources for novel starch with high amylose and RS content, and provided a theoretical basis for further utilizations of D. alata starch in food processing and industry application.


Asunto(s)
Amilosa , Dioscorea , Amilosa/química , Dioscorea/química , Almidón/química , Viscosidad , Temperatura
11.
Front Plant Sci ; 13: 1059749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466223

RESUMEN

High temperature (HT) during grain filling had adverse influences on starch synthesis. In this study, the influences of HT on resistant starch (RS) formation in rice were investigated. Most genes in ssIIIa mutants especially in RS4 were upregulated under Normal Temperature (NT) while downregulated under HT when compared with those of wild parent R7954. ssIIIa mutants had higher RS content, more lipid accumulation, higher proportion of short chains of DP 9-15, and less long chains of DP ≥37. ssIIIa mutation exacerbated the influences of HT on starch metabolite and caused larger declines in the expression of BEI, BEIIa, BEIIb, and SSIVb when exposed to HT. HT reduced the contents of total starch and apparent amylose significantly in wild type but not in mutants. Meanwhile, lipids were enriched in all varieties, but the amounts of starch-lipid complexes and the RS content were only heightened in mutants under HT. HT led to greatest declines in the amount of DP 9-15 and increases in the proportion of fb3 (DP ≥37); the declines and increases were all larger in mutants, which resulted in varied starch crystallinity. The increased long-chain amylopectin and lipids may be the major contributor for the elevated RS content in mutants under HT through forming more starch-lipid complexes (RSV).

12.
Food Funct ; 13(23): 12182-12193, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36326288

RESUMEN

Rice is a staple food for more than half of the world's population and it is regarded as a high glycemic index (GI) food. Breeders developed high amylose rice having low digestibility, but it also has inferior palatability. This study used high-amylose rice (HAR) produced by gamma irradiation and compared the digestion and physicochemical properties related to palatability with those of low-amylose rice (LAR). Pre-soaking and different-pH treatments were adopted to find a way to enhance the palatability of HAR while maintaining its low digestibility. After pre-soaking, HAR had a higher water uptake ratio (4.68 vs. 4.11 g g-1), proportion of leached starch (16.6 vs. 12.6%) and adhesiveness (77 vs. 39), but lower setback (0.092 vs. 0.107 Pa s), hardness (10.1 vs. 12.6 kg) and resilience (0.20 vs. 0.25). The results showed that pre-soaking was able to enhance the quality of the cooked rice mainly by modifying the starch amorphous region while maintaining the low digestibility of HAR. Pre-soaking can be adopted as a practical and effective household cooking method to prepare rice with relatively low digestibility and good palatability.


Asunto(s)
Amilosa , Oryza , Amilosa/química , Oryza/química , Digestión , Culinaria/métodos , Almidón/química
13.
Curr Res Food Sci ; 5: 1660-1667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193039

RESUMEN

Resistant starch (RS) is beneficial for humans, especially for the diabetes. Raw potato had a great deal of RS, while most of which become digestible after gelatinization. Thus, few RS will be retained in potatoes after regular cooking. To preserve RS in cooked potatoes as much as possible, microwave heating before (MFD) and after freeze-drying (FDM) were conducted with three different potatoes. After MFD, the RS content in potatoes was lower than 7% and the RDS content was higher than 45% for three potatoes. However, RS in potatoes treated with FDM was still as high as 40%, similar to that in the raw potatoes. Meantime, FDM caused less browning, produced a certain level of pyrazines, benzeneacetaldehyde and other flavor compounds, endowing cooked potatoes special baked flavor. Freeze-drying before microwave heating is a valuable way to reserve RS in cooked potatoes, which could also be used to reserve high RS content in crisp, chips, and other processed potatoes.

14.
Food Funct ; 12(22): 11547-11556, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34708854

RESUMEN

The amount and distribution of rice endosperm lipids can influence starch digestibility and nutritional properties of white rice. However, this aspect has been poorly investigated thus far. We investigated the digestion properties of five rice varieties and common rice having different lipid contents (8.1-24.2 g kg-1) showing that the lipid content is positively correlated with the resistant starch content and negatively correlated with digestion extent (C∞) and estimated glycemic index (eGI). After non-starch lipid (NSL) removal from selected high-lipid mutants (ALK3 and RS4), C∞ was significantly enhanced compared to native samples when digested by α-amylase, while this phenomenon was not observed in low-lipid rice (GZ93). When pancreatin was used, starch digestion was only delayed; triglycerides were gradually hydrolyzed by pancreatic lipase and the lipids-starch complex became no longer resistant to hydrolysis by α-amylase. These results indicated that rice endosperm lipids inhibited starch digestion, by transforming part of the starch into a slowly digestible starch fraction. High-lipid mutants also had a higher total amount of, and more bioaccessible, γ-oryzanol than low-lipid varieties. This study indicates that high-lipid white rice has great potential in designing functional rice-based foods, combining a relatively lower eGI and a high γ-oryzanol content.


Asunto(s)
Endospermo/química , Lípidos/química , Oryza/química , Fenilpropionatos , Almidón , Lipasa/metabolismo , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Almidón/química , Almidón/metabolismo
15.
Sci Rep ; 11(1): 17116, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429441

RESUMEN

Sweet potato, a dicotyledonous and perennial plant, is the third tuber/root crop species behind potato and cassava in terms of production. Long terminal repeat (LTR) retrotransposons are highly abundant in sweet potato, contributing to genetic diversity. Retrotransposon-based insertion polymorphism (RBIP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there have been no transposon marker-based genetic diversity analyses of sweet potato. Here, we reported a structure-based analysis of the sweet potato genome, a total of 21555 LTR retrotransposons, which belonged to the main LTR-retrotransposon subfamilies Ty3-gypsy and Ty1-copia were identified. After searching and selecting using Hidden Markov Models (HMMs), 1616 LTR retrotransposon sequences containing at least two models were screened. A total of 48 RBIP primers were synthesized based on the high copy numbers of conserved LTR sequences. Fifty-six amplicons with an average polymorphism of 91.07% were generated in 105 sweet potato germplasm resources based on RBIP markers. A Unweighted Pair Group Method with Arithmatic Mean (UPGMA) dendrogram, a model-based genetic structure and principal component analysis divided the sweet potato germplasms into 3 groups containing 8, 53, and 44 germplasms. All the three analyses produced significant groupwise consensus. However, almost all the germplasms contained only one primary locus. The analysis of molecular variance (AMOVA) among the groups indicated higher intergroup genetic variation (53%) than intrapopulation genetic variation. In addition, long-term self-retention may cause some germplasm resources to exhibit variable segregation. These results suggest that these sweet potato germplasms are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the utility of RBIP markers for determining the intraspecies variability of sweet potato and have the potential to be used as core primer pairs for variety identification, genetic diversity assessment and linkage map construction. The results could provide a good theoretical reference and guidance for germplasm research and breeding.


Asunto(s)
Ipomoea batatas/genética , Polimorfismo Genético , Retroelementos/genética , Marcadores Genéticos , Fitomejoramiento/métodos , Fitomejoramiento/normas , Semillas/genética
16.
New Phytol ; 231(3): 1073-1087, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34042184

RESUMEN

Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive. We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism. The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport. Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón
17.
Int J Biol Macromol ; 183: 1540-1547, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34019925

RESUMEN

Physicochemical characteristics of starch isolated from Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) tuber root of 4 different origins were firstly analyzed in this study. The starch granules of T. hemsleyanum tuber root were oval or globular, showed unimodal distribution with average size of 21.66-28.79 µm. T. hemsleyanum starch had typical B-type diffraction pattern. T. hemsleyanum root was rich in starch, and apparent amylose content ranged from 39.82% to 47.67%. The amylopectin chain profiles showed that over 50% of the total detectable chains had degree of polymerization (DP) with 13-24. T. hemsleyanum tuber root had high RS content, which reached up to 61.44% in flour and 68.81% in isolated starch. After cooking, the RS content decreased, but was still high up to 7.52% in flour and 9.93% in isolated starch. The peak gelatinization temperature of T. hemsleyanum starch ranged from 68.12 to 74.42 °C. The peak viscosity of T. hemsleyanum flour and starch ranged from 778 to 1258 cP and 1577 to 2009 cP respectively. The results indicate that T. hemsleyanum is a potential source for novel starch with high resistant starch and provide some guides for comprehensive utilization of T. hemsleyanum starch in food and pharmaceuticals industry.


Asunto(s)
Almidón/química , Vitaceae/química , Amilopectina/química , Temperatura , Viscosidad
18.
Rice (N Y) ; 14(1): 23, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33638799

RESUMEN

BACKGROUND: Zn deficiency is one of the leading public health problems in the world. Staple food crop, such as rice, cannot provide enough Zn to meet the daily dietary requirement because Zn in grain would chelate with phytic acid, which resulted in low Zn bioavailability. Breeding new rice varieties with high Zn bioavailability will be an effective, economic and sustainable strategy to alleviate human Zn deficiency. RESULTS: The high Zn density mutant LLZ was crossed with the low phytic acid mutant Os-lpa-XS110-1, and the contents of Zn and phytic acid in the brown rice were determined for the resulting progenies grown at different sites. Among the hybrid progenies, the double mutant always displayed significantly higher Zn content and lower phytic acid content in grain, leading to the lowest molar ratio of phytic acid to Zn under all environments. As assessed by in vitro digestion/Caco-2 cell model, the double mutant contained the relatively high content of bioavailable Zn in brown rice. CONCLUSIONS: Our findings suggested pyramiding breeding by a combination of high Zn density and low phytic acid is a practical and useful approach to improve Zn bioavailability in rice grain.

19.
New Phytol ; 229(5): 2751-2764, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33185314

RESUMEN

The SAUR26 subfamily genes play an important role in conferring variations of thermo-responsiveness of growth architecture among natural accessions of Arabidopsis thaliana. The expression variations are critical for their activity variations, but how expression variations are generated is unknown. We identified genetic loci for gene expression variations through expression genome-wide association study (eGWAS) and investigated their mechanisms through molecular analyses. We found that cis elements are the major determinants for expression variations of SAUR26, SAUR27, and SAUR28. Polymorphisms in the promoter region likely impact PIF4 regulation while those at the 3'UTR affect mRNA stability to generate variations in SAUR26 expression levels. These polymorphisms also differentially affect the mRNA stability of SAUR26 at two temperatures. This study reveals two mechanisms involving cis elements in generating gene expression diversity, which is likely important for local adaptations in Arabidopsis natural accessions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Péptidos y Proteínas de Señalización Intracelular/genética , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Temperatura
20.
Mol Plant ; 13(12): 1784-1801, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33038484

RESUMEN

Rice tillering is an important agronomic trait affecting grain yield. Here, we identified a high-tillering mutant tillering20 (t20), which could be restored to the wild type by treatment with the strigolactone (SL) analog rac-GR24. T20 encodes a chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites, SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering. We discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-ß-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.


Asunto(s)
Ácido Abscísico/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , cis-trans-Isomerasas/metabolismo , zeta Caroteno/metabolismo , Adaptación Fisiológica , Prueba de Complementación Genética , Mutación/genética , Brotes de la Planta/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA