Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.958
Filtrar
1.
ACS Omega ; 9(20): 22074-22083, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799335

RESUMEN

Drilling for gas extraction is widely used as the main approach to manage gas in mines. However, gas leakage during borehole extraction reduces the root cause of the effectiveness of gas extraction. Given that forming a normal hole in the prominent coal seam of the Qingdong Coal Mine is impossible and that air leakage leads to difficulties in prepumping gas in the coal seam, we selected coal seam 3# as the object of this study. First, qualitative analysis determined that the air leakage channel restricted effective gas extraction. Second, short-hole grouting and plugging were proposed to increase the concentration and efficiency of gas extraction from the coal wall, forming a barrier by blocking the fissure network in the plastic zone of the surrounding rock of the coal roadway and preventing the air inside the roadway from penetrating into the coal seam and gas extraction drill holes. Finally, evaluation of the gas extraction efficiency between the grouting test and comparison areas indicated that the initial gas extraction concentration of a single hole could reach 89% when the depth of the selected blocking hole was 15 m. Grouting slowly decreased the gas extraction concentration from 72 to 25%, which effectively improved the speed at which the gas content was reduced in the coal body. The study findings provide a field basis for similar mines to improve their gas extraction efficiency and extend their extraction time.

2.
Clin Nutr ; 43(7): 1599-1608, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38776618

RESUMEN

BACKGROUND: Metastasis and recurrence are the main causes of death in post-operative bladder cancer (BC), emphasizing the importance of exploring early-stage diagnostic markers. Serum biomarkers constitute a promising diagnostic approach for asymptomatic stage cancer as they are non-invasive, have high accuracy and low cost. AIMS: To correlate concentrations of plasma amino acids with BC progression to assess their utility as an early-stage diagnostic. METHODS: Newly diagnosed BC patients (n = 95) and normal controls (n = 96) were recruited during the period from 1 December 2018 to 30 December 2020. General and food frequency questionnaires established their basic information and dietary intake data. Venous blood samples were collected from fasting subjects and used to detect levels of plasma amino acids by liquid chromatography-mass spectrometry. Verification was performed on the GSE13507 transcriptome gene expression matrix of BC from Gene Expression Omnibus (GEO) database. RESULTS: Eleven amino acids have been identified as altered in the plasma of newly diagnosed BC patients compared to controls (P < 0.05). Adjusted by gender, education, smoking and other factors, plasma ornithine level (OR = 0.256, 95% CI: 0.104-0.630) is a protective factor for BC, plasma levels of methionine (OR = 3.460, 95% CI: 1.384-8.651), arginine (OR = 3.851, 95% CI: 1.542-9.616), and glutamate (OR = 3.813, 95% CI: 1.543-9.419) are all risk factors for BC. ROC analysis demonstrated that the combination of plasma ornithine, methionine, arginine and glutamate could accurately diagnose BC (AUC = 0.84, 95% CI: 0.747-0.833). In addition, the mRNA level of arginase 1 was decreased (P < 0.05), while the inducible nitric oxide synthase was increased significantly, which may be linked with the disturbance of arginine metabolism in BC patients. Further analysis of GEO database confirmed the role of arginine metabolism. CONCLUSION: A biomarker panel containing four amino acids may provide a feasible strategy for the early diagnosis of BC. However, further validation is required through prospective studies.

3.
Cell ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38776919

RESUMEN

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.

4.
Environ Sci Technol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778038

RESUMEN

Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.

5.
Ann Hematol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724656

RESUMEN

Chimeric antigen receptor T (CAR-T) cells therapy is a milestone achievement in the immunotherapy of relapsed and refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL). However, some patients treated with CAR-T cells do not achieve complete remission, the mechanisms of which have not been elucidated. In the present study, we report a 9-year-old pediatric patient with refractory B-ALL received a triple infusion of autologous CD19 CAR-T cells therapy after the second relapse. CAR-T cells expanded in the peripheral blood and bone marrow. However, the patient did not achieve complete remission, indicating a lack of response to CAR-T cells therapy. Analysis of etiological factors revealed that the number of CD4 and CD8 double-negative T (DNT) cells was significantly upregulated in the peripheral blood, bone marrow, and autologous CAR-T cells products. In conclusiont, these findings indicate that DNT cells mediated resistance to CAR-T cells therapy in this pediatric patient with R/R B-ALL.

6.
ACS Omega ; 9(17): 19236-19249, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708219

RESUMEN

The aim of this study is to explore the inhibition of nanocalcium oxalate monohydrate (nano-COM) crystal adhesion and aggregation on the HK-2 cell surface after the protection of corn silk polysaccharides (CSPs) and the effect of carboxyl group (-COOH) content and polysaccharide concentration. METHOD: HK-2 cells were damaged by 100 nm COM crystals to build an injury model. The cells were protected by CSPs with -COOH contents of 3.92% (CSP0) and 16.38% (CCSP3), respectively. The changes in the biochemical indexes of HK-2 cells and the difference in adhesion amount and aggregation degree of nano-COM on the cell surface before and after CSP protection were detected. RESULTS: CSP0 and CCSP3 protection can obviously inhibit HK-2 cell damage caused by nano-COM crystals, restore cytoskeleton morphology, reduce intracellular ROS level, inhibit phosphoserine eversion, restore the polarity of the mitochondrial membrane potential, normalize the cell cycle process, and reduce the expression of adhesion molecules, OPN, Annexin A1, HSP90, HAS3, and CD44 on the cell surface. Finally, the adhesion and aggregation of nano-COM crystals on the cell surface were effectively inhibited. The carboxymethylated CSP3 exhibited a higher protective effect on cells than the original CSP0, and cell viability was further improved with the increase in polysaccharide concentration. CONCLUSIONS: CSPs can protect HK-2 cells from calcium oxalate crystal damage and effectively reduce the adhesion and aggregation of nano-COM crystals on the cell surface, which is conducive to inhibiting the formation of calcium oxalate kidney stones.

7.
Biomacromolecules ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713187

RESUMEN

The control over secondary structure has been widely studied to regulate the properties of polypeptide materials, which is used to change their functions in situ for various biomedical applications. Herein, we designed and constructed enzyme-responsive polypeptides as gating materials for mesoporous silica nanoparticles (MSNs), which underwent a distorted structure-to-helix transition to promote the release of encapsulated drugs. The polypeptide conjugated on the MSN surface adopted a negatively charged, distorted, flexible conformation, covering the pores of MSN to prevent drug leakage. Upon triggering by alkaline phosphatase (ALP) overproduced by tumor cells, the polypeptide transformed into positively charged, α-helical, rigid conformation with potent membrane-penetrating capabilities, which protruded from the MSN surface to uncover the pores. Such a transition thus enabled cancer-selective drug release and cellular internalization to efficiently kill tumor cells. This study highlights the important role of chain flexibility in modulating the biological function of polypeptides and provides a new application paradigm for synthetic polypeptides with secondary-structure transition.

8.
J Sleep Res ; : e14233, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768974

RESUMEN

The aim of this study is to investigate the association between sleep quality during pregnancy and fetal growth. Pregnant women and their fetuses at 16-20 gestational weeks in Nantong Maternal and Child Health Hospital were recruited. Women were classified as having "good sleep quality" (Pittsburgh Sleep Quality Index score ≤ 5) and "poor sleep quality" (Pittsburgh Sleep Quality Index score > 5) according to the Pittsburgh Sleep Quality Index scores. The fetal growth was evaluated by three ultrasonographic examinations, birth weight and birth length. We used general linear model and multiple linear regression models to estimate the associations. A total of 386 pairs of mother and infant were included in the data analysis. After adjusting for gestational weight gain, anxiety and depression, fetuses in the good sleep quality group had greater abdominal circumference (p = 0.039 for 28-31+6 weeks gestation, p = 0.012 for 37-40+6 weeks gestation) and femur length (p = 0.014 for 28-31+6 weeks gestation, p = 0.041for 37-40+6 weeks gestation) at 28-31+6 weeks gestation and 37-40+6 weeks gestation, and increased femur length (p = 0.007) at 28-31+6 weeks gestation. Birth weights (p = 0.018) were positively associated with sleep quality. Poor sleep quality was associated with poor intrauterine physical development, decreased abdominal circumference and femur length, and lower birth weight after adjusting for confounding factors. Attention to the fetal growth of pregnant women with poor sleep quality has the potential to decrease the risk of adverse fetal outcomes.

9.
Cell Death Discov ; 10(1): 241, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762481

RESUMEN

Programmed cell death-ligand 1 (PD-L1) has a significant role in tumor progression and metastasis, facilitating tumor cell evasion from immune surveillance. PD-L1 can be detected in the tumor cell nucleus and exert an oncogenic effect by nuclear translocation. Colorectal cancer (CRC) progression and liver metastasis (CCLM) are among the most lethal diseases worldwide, but the mechanism of PD-L1 nuclear translocation in CRC and CCLM remains to be fully understood. In this study, using CRISPR-Cas9-based genome-wide screening combined with RNA-seq, we found that the oncogenic factor NUP43 impacted the process of PD-L1 nuclear translocation by regulating the expression level of the PD-L1 chaperone protein IPO5. Subsequent investigation revealed that this process could stimulate the expression of tumor-promoting factor TM4SF1 and further activate the JAK/STAT3 signaling pathway, which ultimately enhanced the transcription of PD-L1, thus establishing a PD-L1-nPD-L1-PD-L1 feedback loop that ultimately promoted CRC progression and CCLM. In conclusion, our study reveals a novel role for nPD-L1 in CRC, identifies the PD-L1-nPD-L1-PD-L1 feedback loop in CRC, and provides a therapeutic strategy for CRC patients.

10.
ACS Appl Mater Interfaces ; 16(20): 25799-25812, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727024

RESUMEN

The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.


Asunto(s)
Hidrogeles , Fósforo , Extracción Dental , Cicatrización de Heridas , Animales , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Fósforo/química , Alveolo Dental/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis/efectos de los fármacos , Ratas , Regeneración Ósea/efectos de los fármacos , Masculino
11.
Plant Physiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758114

RESUMEN

Lespedeza potaninii, a xerophytic subshrub belonging to the legume family, is native to the Tengger Desert and is highly adapted to drought. It has important ecological value due to its drought adaptability, but the underlying molecular mechanisms remain largely unknown. Here, we report a 1.24 Gb chromosome-scale assembly of the L. potaninii genome (contig N50=15.75 Mb). Our results indicate that L. potaninii underwent an allopolyploid event with two subgenomes, A and B, presenting asymmetric evolution and B subgenome dominance. We estimate that the two diploid progenitors of L. potaninii diverged around 3.6 MYA and merged around 1.0 MYA. We revealed that the expansion of hub genes associated with drought responses, such as the binding partner 1 of accelerated cell death 11 (ACD11) (BPA1), facilitated environmental adaptations of L. potaninii to desert habitats. We found a novel function of the BPA1 family in abiotic stress tolerance in addition to the known role in regulating the plant immune response, which could improve drought tolerance by positively regulating reactive oxygen species homeostasis in plants. We revealed that bZIP transcription factors could bind to the BPA1 promoter and activate its transcription. Our work fills the genomic data gap in the Lespedeza genus and the tribe Desmodieae, which should provide both theoretical support in the study of drought tolerance and in the molecular breeding of legume crops.

12.
Arch Bronconeumol ; 2024 Apr 18.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38749856

RESUMEN

BACKGROUND: High blood eosinophil count (BEC) is a useful biomarker for guiding inhaled corticosteroid therapy in patients with chronic obstructive pulmonary disease (COPD), yet its implications in a community setting remain underexplored. This study aimed to elucidate the clinical characteristics and outcomes of COPD patients with high BEC within the Chinese community. METHODS: We obtained baseline and 2-year follow-up data from COPD patients (post-bronchodilator forced expiratory volume in 1 second/forced vital capacity <0.70) in the early COPD study. Patients with a BEC ≥300cells/µL were classified as the high BEC group. We assessed differences in the clinical characteristics and outcomes between high and low BEC patients. Subgroup analyses were conducted on COPD patients without a history of corticosteroid use or asthma. RESULTS: Of the 897 COPD patients, 205 (22.9%) had high BEC. At baseline, high BEC patients exhibited a higher proportion of chronic respiratory symptoms, lower lung function, and more severe small airway dysfunction than low BEC patients. Over the 2-year period, high BEC patients experienced a significantly higher risk of acute exacerbations (relative risk: 1.28, 95% confidence interval: 1.09-1.49; P=0.002), even after adjusting for confounders. No significant difference was observed in lung function decline rates. The subgroup analysis yielded consistent results. CONCLUSIONS: COPD patients with high BEC in a Chinese community exhibited poorer health status, more severe small airway dysfunction, and a higher risk of exacerbations. Future research should explore the pathological mechanisms underlying the poorer prognosis in patients with high BEC.

13.
Adv Healthc Mater ; : e2400533, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722018

RESUMEN

Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.

14.
Environ Sci Technol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696305

RESUMEN

Identifying causative toxicants in mixtures is critical, but this task is challenging when mixtures contain multiple chemical classes. Effect-based methods are used to complement chemical analyses to identify toxicants, yet conventional bioassays typically rely on an apical and/or single endpoint, providing limited diagnostic potential to guide chemical prioritization. We proposed an event-driven taxonomy framework for mixture risk assessment that relied on high-throughput screening bioassays and toxicant identification integrated by deep learning. In this work, the framework was evaluated using chemical mixtures in sediments eliciting aryl-hydrocarbon receptor activation and oxidative stress response. Mixture prediction using target analysis explained <10% of observed sediment bioactivity. To identify additional contaminants, two deep learning models were developed to predict fingerprints of a pool of bioactive substances (event driver fingerprint, EDFP) and convert these candidates to MS-readable information (event driver ion, EDION) for nontarget analysis. Two libraries with 121 and 118 fingerprints were established, and 247 bioactive compounds were identified at confidence level 2 or 3 in sediment extract using GC-qToF-MS. Among them, 12 toxicants were analytically confirmed using reference standards. Collectively, we present a "bioactivity-signature-toxicant" strategy to deconvolute mixtures and to connect patchy data sets and guide nontarget analysis for diverse chemicals that elicit the same bioactivity.

15.
Cell Signal ; 120: 111197, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697447

RESUMEN

OBJECTIVES: The clinical T1 stage solid lung cancer with metastasis is a serious threat to human life and health. In this study, we performed RNA sequencing on T1 advanced-stage lung cancer and adjacent tissues to identify a novel biomarker and explore its roles in lung cancer. METHODS: Quantitative reversed-transcription PCR, reverse transcription PCR and Western blot, MSP and Methtarget were utilized to evaluate FIBIN expression levels at both the transcriptional and protein levels as well as its methylation status. Differential target protein was evaluated for relative and absolute quantitation by isobaric tags. Co-IP was performed to detect the interactions between target protein. Precise location and expression levels of target proteins were revealed by immunofluorescence staining and component protein extraction using specific kits, respectively. RESULTS: We reported that FIBIN was frequently silenced due to promoter hypermethylation in lung cancer. Additionally, both in vitro and in vivo experiments confirmed the significant anti-proliferation and anti-metastasis capabilities of FIBIN. Mechanistically, FIBIN decreased the nuclear accumulation of ß-catenin by reducing the binding activity of GSK3ß with ANXA2 while promoting interaction between GSK3ß and ß-catenin. CONCLUSION: Our findings firstly identify FIBIN is a tumor suppressor, frequently silenced due to promoter hypermethylation. FIBIN may serve as a predictive biomarker for progression or metastasis among early-stage lung cancer patients.

16.
J Perinatol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802655

RESUMEN

OBJECTIVE: This study was to systematically assess the occipital lobe gray and white matter volume of isolated ventriculomegaly (IVM) fetuses with MRI and to follow up the neurodevelopment of participants. METHOD: MRI was used to evaluate 37 IVM fetuses and 37 control fetuses. The volume of gray and white matter in each fetal occipital gyrus was manually segmented and compared, and neurodevelopment was followed up and assessed in infancy and early childhood. RESULT: Compared with the control group, the volume of gray matter in occipital lobe increased in the IVM group, and the incidence of neurodevelopmental delay increased. CONCLUSION: We tested the hypothesis that prenatal diagnosis IVM represents a biological marker for development in fetal occipital lobe. Compared with the control group, the IVM group showed differences in occipital gray matter development and had a higher risk of neurodevelopmental delay.

17.
Heliyon ; 10(9): e30703, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756588

RESUMEN

The progression of liver diseases, from viral hepatitis and fatty liver disease to cirrhosis and hepatocellular carcinoma (HCC), is the most representative series of pathological events in liver diseases. While serotonin (5-HT) primarily regulates brain functions such as psychology, mood, and appetite in the central nervous system (CNS), peripheral 5-HT plays a crucial role in regulating tumor development, glucose and lipid metabolism, immune function and inflammatory response related to liver diseases. These peripheral physiological processes involving 5-HT are the key mechanisms driving the development of these liver diseases. This study presents an overview of the existing literature, focusing on the role of 5-HT in HCC, cirrhosis, fatty liver disease, viral hepatitis, and liver injury. In summary, while 5-HT promotes liver regeneration, it can also contribute to the progression of chronic liver disease. These findings indicate the potential for the development and use of 5-HT-related drugs for the treatment of liver diseases, including HCC and cirrhosis.

18.
Adv Mater ; : e2400683, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747891

RESUMEN

As electric vehicles, portable electronic devices, and tools have increasingly high requirements for battery energy density and power density, constantly improving battery performance is a research focus. Accurate measurement of the structure-activity relationship of active materials is key to advancing the research of high-performance batteries. However, conventional performance tests of active materials are based on the electrochemical measurement of porous composite electrodes containing active materials, polymer binders, and conductive carbon additives, which cannot establish an accurate structure-activity relationship with the physical characterization of microregions. In this review, in order to promote the accurate measurement and understanding of the structure-activity relationship of materials, the electrochemical measurement and physical characterization of energy storage materials at single-particle scale are reviewed. The potential problems and possible improvement schemes of the single particle electrochemical measurement and physical characterization are proposed. Their potential applications in single particle electrochemical simulation and machine learning are prospected. This review aims to promote the further application of single particle electrochemical measurement and physical characterization in energy storage materials, hoping to achieve 3D unified evaluation of physical characterization, electrochemical measurement, and theoretical simulation at the single particle scale to provide new inspiration for the development of high-performance batteries.

19.
Stem Cell Res ; 77: 103444, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761686

RESUMEN

The NF1 gene is related to neurofibromatosis type 1 (NF1), which is an autosomal dominant disorder associated with multisystem involvement and epilepsy susceptibility. A human induced pluripotent stem cell (iPSC) line was derived from a pediatric patient with NF1 and epilepsy, harboring a heterozygous NF1 gene mutation. The iPSC line exhibits high levels of pluripotency markers, maintains the NF1 gene mutation, and demonstrates the capacity to undergo differentiation potential in vitro into three germ layers. The iPSC line will serve as a valuable resource for investigating the underlying mechanisms and conducting drug screening related to NF1 and NF1-associated epilepsy.


Asunto(s)
Epilepsia , Heterocigoto , Células Madre Pluripotentes Inducidas , Mutación , Neurofibromatosis 1 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Epilepsia/genética , Epilepsia/patología , Neurofibromina 1/genética , Línea Celular , Diferenciación Celular , Masculino , Genes de Neurofibromatosis 1
20.
Front Chem ; 12: 1383886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807977

RESUMEN

Sixteen ceanothane-type triterpenoids, including four new compounds-hovendulcisic acids A-D (1-4) -were purified from the stems of Hovenia dulcis Thunb. The structures of 1-4 were confirmed by comprehensive means including ECD and quantum chemical calculations. Putative biosynthetic pathways of 1-16 were proposed, and 3, 5, and 15 exhibited antitumor activity on A549 and MDA-MB-231 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA