Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781336

RESUMEN

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Asunto(s)
Encéfalo , Análisis de la Célula Individual , Transcriptoma , Humanos , Encéfalo/metabolismo , Análisis de la Célula Individual/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Perfilación de la Expresión Génica/métodos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Estudio de Asociación del Genoma Completo/métodos , Análisis de Secuencia de ARN/métodos , Adulto
2.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798404

RESUMEN

The repertory of neurons generated by progenitor cells depends on their location along antero-posterior and dorso-ventral axes of the neural tube. To understand if recreating those axes was sufficient to specify human brain neuronal diversity, we designed a mesofluidic device termed Duo-MAPS to expose induced pluripotent stem cells (iPSC) to concomitant orthogonal gradients of a posteriorizing and a ventralizing morphogen, activating WNT and SHH signaling, respectively. Comparison of single cell transcriptomes with fetal human brain revealed that Duo-MAPS-patterned organoids generated the major neuronal lineages of the forebrain, midbrain, and hindbrain. Morphogens crosstalk translated into early patterns of gene expression programs predicting the generation of specific brain lineages. Human iPSC lines from six different genetic backgrounds showed substantial differences in response to morphogens, suggesting that interindividual genomic and epigenomic variations could impact brain lineages formation. Morphogen gradients promise to be a key approach to model the brain in its entirety.

3.
Sci Adv ; 10(15): eadk2082, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598634

RESUMEN

We report an approach for cancer phenotyping based on targeted sequencing of cell-free DNA (cfDNA) for small cell lung cancer (SCLC). In SCLC, differential activation of transcription factors (TFs), such as ASCL1, NEUROD1, POU2F3, and REST defines molecular subtypes. We designed a targeted capture panel that identifies chromatin organization signatures at 1535 TF binding sites and 13,240 gene transcription start sites and detects exonic mutations in 842 genes. Sequencing of cfDNA from SCLC patient-derived xenograft models captured TF activity and gene expression and revealed individual highly informative loci. Prediction models of ASCL1 and NEUROD1 activity using informative loci achieved areas under the receiver operating characteristic curve (AUCs) from 0.84 to 0.88 in patients with SCLC. As non-SCLC (NSCLC) often transforms to SCLC following targeted therapy, we applied our framework to distinguish NSCLC from SCLC and achieved an AUC of 0.99. Our approach shows promising utility for SCLC subtyping and transformation monitoring, with potential applicability to diverse tumor types.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Secuencias Reguladoras de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica
4.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38464084

RESUMEN

Tourette syndrome (TS) is a disorder of high-order integration of sensory, motor, and cognitive functions afflicting as many as 1 in 150 children and characterized by motor hyperactivity and tics. Despite high familial recurrence rates, a few risk genes and no biomarkers have emerged as causative or predisposing factors. The syndrome is believed to originate in basal ganglia, where patterns of motor programs are encoded. Postmortem immunocytochemical analyses of brains with severe TS revealed decreases in cholinergic, fast-spiking parvalbumin, and somatostatin interneurons within the striatum (caudate and putamen nuclei). Here, we performed single cell transcriptomic and chromatin accessibility analyses of the caudate nucleus from 6 adult TS and 6 control post-mortem brains. The data reproduced the known cellular composition of the adult human striatum, including a majority of medium spiny neurons (MSN) and small populations of GABAergic and cholinergic interneurons. Comparative analysis revealed that interneurons were decreased by roughly 50% in TS brains, while no difference was observed for other cell types. Differential gene expression analysis suggested that mitochondrial function, and specifically oxidative metabolism, in MSN and synaptic function in interneurons are both impaired in TS subjects. Furthermore, such an impairment was coupled with activation of immune response pathways in microglia. Also, our data explicitly link gene expression changes to changes in cis-regulatory activity in the corresponding cell types, suggesting de-regulation as a factor for the etiology of TS. These findings expand on previous research and suggest that impaired modulation of striatal function by interneurons may be the origin of TS symptoms.

5.
Sci Rep ; 14(1): 3936, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365907

RESUMEN

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Organoides , Prosencéfalo , Elementos de Facilitación Genéticos
7.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645832

RESUMEN

Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~7,000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.

8.
Nat Neurosci ; 26(9): 1505-1515, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563294

RESUMEN

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/patología , Neuronas/metabolismo , Neurogénesis , Prosencéfalo/metabolismo , Organoides/metabolismo
9.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461590

RESUMEN

APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of ΔNp63 in gefitinibresistant cells reduces the expression of the p63 target genes IL1a/b and sensitizes these cells to the thirdgeneration EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.

11.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993743

RESUMEN

Sample-wise deconvolution methods have been developed to estimate cell-type proportions and gene expressions in bulk-tissue samples. However, the performance of these methods and their biological applications has not been evaluated, particularly on human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk-tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk-tissue or single-cell eQTLs alone. Differential gene expression associated with multiple phenotypes were also examined using the deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq and sc/snRNAseq data, provided new insights into the biological applications of deconvoluted data.

12.
Biomark Res ; 11(1): 31, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927800

RESUMEN

BACKGROUND: Studies have not systematically compared the ability to verify performance of prognostic transcripts in paired bulk mononuclear cells versus viable CD34-expressing leukemic blasts from patients with acute myeloid leukemia. We hypothesized that examining the homogenous leukemic blasts will yield different biological information and may improve prognostic performance of expression biomarkers. METHODS: To assess the impact of cellular heterogeneity on expression biomarkers in acute myeloid leukemia, we systematically examined paired mononuclear cells and viable CD34-expressing leukemic blasts from SWOG diagnostic specimens. After enrichment, patients were assigned into discovery and validation cohorts based on availability of extracted RNA. Analyses of RNA sequencing data examined how enrichment impacted differentially expressed genes associated with pre-analytic variables, patient characteristics, and clinical outcomes. RESULTS: Blast enrichment yielded significantly different expression profiles and biological pathways associated with clinical characteristics (e.g., cytogenetics). Although numerous differentially expressed genes were associated with clinical outcomes, most lost their prognostic significance in the mononuclear cells and blasts after adjusting for age and ELN risk, with only 11 genes remaining significant for overall survival in both cell populations (CEP70, COMMD7, DNMT3B, ECE1, LNX2, NEGR1, PIK3C2B, SEMA4D, SMAD2, TAF8, ZNF444). To examine the impact of enrichment on biomarker verification, these 11 candidate biomarkers were examined by quantitative RT/PCR in the validation cohort. After adjusting for ELN risk and age, expression of 4 genes (CEP70, DNMT3B, ECE1, and PIK3CB) remained significantly associated with overall survival in the blasts, while none met statistical significance in mononuclear cells. CONCLUSIONS: This study provides insights into biological information gained/lost by examining viable CD34-expressing leukemic blasts versus mononuclear cells from the same patient and shows an improved verification rate for expression biomarkers in blasts.

13.
bioRxiv ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36712079

RESUMEN

Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.

14.
J Immunother Cancer ; 11(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38251688

RESUMEN

BACKGROUND: Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS: We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS: We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS: Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Linfocitos T CD4-Positivos , Técnicas de Cultivo de Célula , Linfocitos T CD8-positivos , Fenotipo
15.
Clin Cancer Res ; 28(20): 4551-4564, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35920742

RESUMEN

PURPOSE: The addition of immune checkpoint blockade (ICB) to platinum/etoposide chemotherapy changed the standard of care for small cell lung cancer (SCLC) treatment. However, ICB addition only modestly improved clinical outcomes, likely reflecting the high prevalence of an immunologically "cold" tumor microenvironment in SCLC, despite high mutational burden. Nevertheless, some patients clearly benefit from ICB and recent reports have associated clinical responses to ICB in SCLC with (i) decreased neuroendocrine characteristics and (ii) activation of NOTCH signaling. We previously showed that inhibition of the lysine-specific demethylase 1a (LSD1) demethylase activates NOTCH and suppresses neuroendocrine features of SCLC, leading us to investigate whether LSD1 inhibition would enhance the response to PD-1 inhibition in SCLC. EXPERIMENTAL DESIGN: We employed a syngeneic immunocompetent model of SCLC, derived from a genetically engineered mouse model harboring Rb1/Trp53 inactivation, to investigate combining the LSD1 inhibitor bomedemstat with anti-PD-1 therapy. In vivo experiments were complemented by cell-based studies in murine and human models. RESULTS: Bomedemstat potentiated responses to PD-1 inhibition in a syngeneic model of SCLC, resulting in increased CD8+ T-cell infiltration and strong tumor growth inhibition. Bomedemstat increased MHC class I expression in mouse SCLC tumor cells in vivo and augmented MHC-I induction by IFNγ and increased killing by tumor-specific T cells in cell culture. CONCLUSIONS: LSD1 inhibition increased MHC-I expression and enhanced responses to PD-1 inhibition in vivo, supporting a new clinical trial to combine bomedemstat with standard-of-care PD-1 axis inhibition in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Muerte Celular , Inhibidores Enzimáticos/uso terapéutico , Etopósido/uso terapéutico , Histona Demetilasas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/patología , Lisina/uso terapéutico , Ratones , Platino (Metal)/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral
16.
Science ; 377(6605): 511-517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901164

RESUMEN

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.


Asunto(s)
Envejecimiento , Trastorno Autístico , Encéfalo , Mutagénesis , Factores de Transcripción , Envejecimiento/genética , Trastorno Autístico/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Humanos , Mutación , Unión Proteica/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
17.
Clin Cancer Res ; 28(20): 4466-4478, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35653119

RESUMEN

PURPOSE: Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN: Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS: We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS: Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.


Asunto(s)
Sarcoma de Ewing , Línea Celular Tumoral , Plasticidad de la Célula , Inmunoprecipitación de Cromatina , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Elife ; 112022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225231

RESUMEN

The Fbw7 ubiquitin ligase targets many proteins for proteasomal degradation, which include oncogenic transcription factors (TFs) (e.g., c-Myc, c-Jun, and Notch). Fbw7 is a tumor suppressor and tumors often contain mutations in FBXW7, the gene that encodes Fbw7. The complexity of its substrate network has obscured the mechanisms of Fbw7-associated tumorigenesis, yet this understanding is needed for developing therapies. We used an integrated approach employing RNA-Seq and high-resolution mapping (cleavage under target and release using nuclease) of histone modifications and TF occupancy (c-Jun and c-Myc) to examine the combinatorial effects of misregulated Fbw7 substrates in colorectal cancer (CRC) cells with engineered tumor-associated FBXW7 null or missense mutations. Both Fbw7 mutations caused widespread transcriptional changes associated with active chromatin and altered TF occupancy: some were common to both Fbw7 mutant cell lines, whereas others were mutation specific. We identified loci where both Jun and Myc were coregulated by Fbw7, suggesting that substrates may have synergistic effects. One coregulated gene was CIITA, the master regulator of MHC Class II gene expression. Fbw7 loss increased MHC Class II expression and Fbw7 mutations were correlated with increased CIITA expression in TCGA colorectal tumors and cell lines, which may have immunotherapeutic implications for Fbw7-associated cancers. Analogous studies in neural stem cells in which FBXW7 had been acutely deleted closely mirrored the results in CRC cells. Gene set enrichment analyses revealed Fbw7-associated pathways that were conserved across both cell types that may reflect fundamental Fbw7 functions. These analyses provide a framework for understanding normal and neoplastic context-specific Fbw7 functions.


Asunto(s)
Neoplasias Colorrectales , Proteínas F-Box , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorrectales/patología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Mutación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Front Immunol ; 12: 782152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868058

RESUMEN

Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Menor/inmunología , Inmunología del Trasplante , Adolescente , Adulto , Anciano , Alelos , Niño , Preescolar , Susceptibilidad a Enfermedades/inmunología , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedad Injerto contra Huésped/epidemiología , Enfermedad Injerto contra Huésped/etiología , Antígenos HLA/genética , Antígenos HLA/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Incidencia , Lactante , Recién Nacido , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Péptidos/genética , Péptidos/inmunología , Trasplante Homólogo , Adulto Joven
20.
Cell Rep Med ; 2(6): 100322, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195685

RESUMEN

We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of circulating inflammatory cell types and show that CD101 variants are associated with increased proinflammatory cytokine production by circulating T cells. One category of CD101 variants is associated with a reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alterations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101 variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased prevalence and altered function of T cell subsets.


Asunto(s)
Antígenos CD/genética , Linaje de la Célula/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Mutación , Linfocitos T Reguladores/inmunología , Adulto , Antígenos CD/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Infecciones por VIH/transmisión , Infecciones por VIH/virología , Humanos , Inmunidad Innata , Inmunofenotipificación , Masculino , Monocitos/inmunología , Monocitos/virología , Fenotipo , Receptores CCR5/genética , Receptores CCR5/inmunología , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Linfocitos T Reguladores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA