Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Total Environ ; 946: 173904, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885712

RESUMEN

Microcystis aeruginosa is the main toxic strain in cyanobacterial blooms, and the recruitment stage in its temperature-dependent seasonal succession is considered as the key to its subsequent growth. In this study, a protocol with specific temperature settings was developed as the simulated recruitment stage in order to investigate and confirm the superior inhibitory effects of allelochemicals on M. aeruginosa at that stage of recruitment. One of the most common allelochemicals, gallic acid (GA) (10 mg/L, 20 mg/L) was employed to treat M. aeruginosa under initially low temperature condition (15 °C), then intermediate (20 °C) and last normal (26 °C), which corresponds to the critical temperatures for cyanobacterial recruitment and growth. Growth, metabolism, photosynthetic activity, extracellular polysaccharides (EPS) and microcystins (MCs) release were analyzed and discussed in this study, and a more sustained and better inhibitory effect over a 20-day period was achieved. Notably, GA (10 mg/L) markedly delayed the recruitment of M. aeruginosa from low temperature, with an inhibition efficiency of 85.71 %, and suppressing Fv/Fm and photosynthetic pigments production. It is also observed that M. aeruginosa at recruitment stage exhibited higher sensitivity and poorer resistance to allelochemical treatment, with variable responses suggesting that optimal dosages may alter. The antioxidant enzyme activities remained high under prolonged stress, and the secretion of EPS was stimulated, indicating that cyanobacteria were more inclined to form colonies. While the laboratory-based inhibitory mechanism appeared to increase the release of microcystins in individual cells, the actual concentration of microcystins in natural aquatic environments requires further investigation.

2.
Environ Res ; 252(Pt 4): 119062, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719066

RESUMEN

This experiment prepared magnetic composite siderophores (DMPs) with strong magnetism, excellent adsorption capacity, and high specific surface area. Exploring the synergistic effect of magnetic nanoparticles and siderophores on Microcystis aeruginosa growth under iron-deficient condition, by utilizing the characteristics of the three-layer core-shell structure of DMPs. This study elucidated the potential mechanism by which DMPs promote the cyanobacterial growth through physiological indicators and transcriptome analysis. On the experiment's final day, cell density in DMPs treatment group at 2, 4, and 8 mg/L were 1.10, 1.14 and 1.16 times higher than those in the control group (Ct), respectively. Similarly, chlorophyll and photosynthetic efficiency results showed improved algae growth with increasing DMPs dosage. The microcystin content in DMPs experimental groups at low, medium, and high concentration were 0.91, 0.86, and 0.83 times that of Ct, indicating alleviation of iron deficiency stress. Additionally, based on extracellular polymers, intracellular and extracellular siderophores, and visualization techniques, DMPs nanoparticles captured free iron sources in the environment, promoting algae growth by entering algal cells and facilitating the uptake and utilization of free iron ions from the solution. During the experiment, the iron uptake and transport genes (feoA and feoB) were significantly upregulated, whereas the algal siderophore synthesis gene (pchF) and the TonB-dependent transport system gene (TonB_C) were significantly downregulated, suggesting heightened activity in intracellular iron uptake and transport. This indicates an abundance of intracellular iron, eliminating the need for secrete siderophores to overcome iron deficiency. Microcystis aeruginosa increased iron bioavailability by using iron transported through DMPs in the environment while internalizing these DMPs. This study explored the mechanism of this synergistic effect to boost algal growth, and provided new ideas for elucidating the mechanism of cyanobacterial bloom outbreaks as well as the innovative application of biotechnology.


Asunto(s)
Deferoxamina , Microcystis , Microcystis/crecimiento & desarrollo , Microcystis/efectos de los fármacos , Deferoxamina/farmacología , Sideróforos , Nanopartículas de Magnetita/química , Hierro/metabolismo
3.
Chemosphere ; 353: 141655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460851

RESUMEN

This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.


Asunto(s)
Cianobacterias , Microbiota , Calidad del Agua , Lagos/microbiología , Fósforo/farmacología , Fósforo/análisis , Eutrofización
4.
Chemosphere ; 341: 140052, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660790

RESUMEN

Microplastics/nanoplastics (MNPs) pollution in different environmental media and its adverse effects on organisms have received increasing attention from researchers. This paper compares the effects of natural concentrations of three different sizes (20 nm, 200 nm, and 2 µm) of MNPs on Vallisneria natans and sediments. MNPs with smaller sizes adhere more readily to V. natans roots, further promoting root elongation. In addition, the larger the particle size of MNPs, the higher the reactive oxygen species level in the roots, and the malondialdehyde level increased accordingly. In the sediment, 20 nm, and 200 nm MNPs increased the activity of related enzymes, including acid phosphatase, urease, and nitrate reductase. In addition, the dehydrogenase content in the treated sediments increased, and the content changes were positively correlated with the size of MNPs. Changes in microorganisms were only observed on the root surface. The addition of MNPs reduced the abundance of Proteobacteria and increased the abundance of Chloroflexi. In addition, at the class level of species composition on the root surface, the abundance of Gammaproteobacteria under the 20 nm, 200 nm, and 2 µm MNP treatments decreased by 21.19%, 16.14%, and 17.03%, respectively, compared with the control group, while the abundance of Anaerolineae increased by 44.63%, 26.31%, and 62.52%, respectively. These findings enhance the understanding of the size effects of MNPs on the roots of submerged plants and sediment.


Asunto(s)
Chloroflexi , Hydrocharitaceae , Microbiota , Microplásticos , Plásticos
5.
Sci Total Environ ; 903: 166707, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660808

RESUMEN

Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 µg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.

6.
Sci Total Environ ; 891: 164507, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268138

RESUMEN

With the rapid development of industry and agriculture, excessive nitrogen and phosphorus released into natural surface water have caused eutrophication. Applying submerged plants to manage eutrophic water has attracted widespread attention. However, there are limited studies on the effects of different nitrogen and phosphorus in the water environment on submerged plants and their epiphytic biofilm. Therefore, this paper investigated the effects of eutrophic water with ammonium chloride (IN), urea (ON), potassium dihydrogen phosphate (IP), and sodium-ß-glycerophosphate (OP) on Myriophyllum verticillatum and epiphytic biofilms. The results showed that Myriophyllum verticillatum exhibited a good purification effect on the eutrophic water with inorganic phosphorus, the removal rates of IP were 68.0%, and the plants grew best in this condition. The fresh weight of the IN group and ON group increased by 12.24% and 7.12%, and the shoot length of the IN group and the ON group increased by 17.71% and 8.33%; the fresh weight of the IP group and OP group increased by 19.19% and 10.83%, the shoot length of the IP group and the OP group increased by 21.09% and 18.23%. In addition, the enzyme activities of superoxide dismutase, catalase, nitrate reductase, and acid phosphatase in plant leaves were significantly changed in eutrophic water with different forms of nitrogen and phosphorus. Finally, the analysis of the epiphytic bacteria showed that different forms of nitrogen and phosphorus nutrients could significantly alter the abundance and structure of microorganisms and microbial metabolism also had significant changes. This study provides a new theoretical basis for evaluating the removal of different forms of nitrogen and phosphorus by Myriophyllum verticillatum, and it also provides new insights for the subsequent engineering of epiphytic microorganisms to improve the capability of submerged plants to treat eutrophic water.


Asunto(s)
Saxifragales , Agua , Cloruro de Amonio , Urea , Bacterias/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Nitrógeno/metabolismo
7.
Sci Total Environ ; 882: 163591, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087006

RESUMEN

This study explored the feasibility and mechanism of cyanobacterial blooms control by calcium peroxide (CaO2). The obtained results demonstrated a strong inhibitory effect of CaO2 on cyanobacterial growth. The removal chlorophyll-a rate reached 31.4 %, while optimal/maximal quantum yield of PSII (Fv/Fm) decreased to 50 % after CaO2 treatment at a concentration of 100 mg L-1 for 96 h. Two main mechanisms were involved in the treatment of cyanobacterial bloom with CaO2, namely oxidative damage and cyanobacterial colony formation. It was found that CaO2 released reactive oxygen species (ROS), namely hydroxyl radicals (·OH), singlet oxygen (1O2), and superoxide radicals (·O2-), inhibiting the activity of antioxidant enzymes in cyanobacterial cells and resulting in intracellular oxidation imbalance. Cyanobacteria can resist oxidative damage by releasing extracellular polymeric substances (EPS). These EPS can combine with CaO2-derived Ca, forming large cyanobacterial aggregates and, consequently, accelerating cell sedimentation. In addition, CaO2 caused programmed cell death (PCD) of cyanobacteria and irreversible damage to the ultrastructure characteristic of the cyanobacterial cells. The apoptotic rate was greatly improved at 100 mg L-1 CaO2. On the other hand, the results obtained using qRT-PCR analysis confirmed the contribution of CaO2 to the down-regulation of photosynthesis-related genes (rbcL and psaB), the up-regulation of microcystins (mcyA and mcyD), the up-regulation of the oxidation system: peroxiredoxin (prx) through oxidative mechanisms. The present study proposes a novel treatment method for water-containing cyanobacterial blooms using CaO2.


Asunto(s)
Cianobacterias , Peróxidos/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Peróxido de Hidrógeno
8.
Aquat Toxicol ; 256: 106410, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36724685

RESUMEN

Antibiotics, such as azithromycin (AZ), tetracycline (TC), and their related antibiotic resistance genes (ARGs), create serious ecological risks to aquatic organisms. This study examined the response mechanisms of submerged macrophytes and periphytic biofilms to a mixture of AZ and TC pollution and determined the antibiotic removal efficiencies and fate of ARGs. The results showed that the plant-biofilm system had a significant capacity for removing both single and combined antibiotics with removal efficiencies of 93.06% ∼99.80% for AZ and 73.35% ∼97.74% for TC. Higher ARG (tetA, tetC, tetW, ermF, ermX, and ermB) abundances were observed in the biofilm, and subsequent exposure to the antibiotic mixture increased the abundances of these genes. Both single and combined antibiotics triggered antioxidant stress, but antagonistic effects were induced only with mixed AZ and TC exposure. Furthermore, the antibiotics changed the structural characteristics of extracellular polysaccharides and induced alterations in the structure of the biofilm microbial community. Increased N-acylated-l-homoserine lactone confirmed alternations in microbial quorum-sensing. The results extend the understanding of the fate of antibiotics and ARGs when aquatic plants and biofilms are exposed to antibiotic mixtures, as well as the organism's response mechanisms.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Antibacterianos/toxicidad , Azitromicina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Tetraciclina/análisis , Tetraciclina/química , Tetraciclina/farmacología , Biopelículas , Farmacorresistencia Microbiana/genética
9.
Environ Sci Pollut Res Int ; 30(16): 47209-47220, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36732453

RESUMEN

To investigate the inhibitory mechanism of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa (M. aeruginosa) from the molecular level, prx, psbA, fabZ, and mcyD were studied, and the cell death mode were also explored. The results showed that expression of prx was slightly up-regulated, while the expression of psbA, fabZ, and mcyD was significantly reduced. It can infer that oxidant damage and photic damage are the main mechanisms for the algicidal effect of ASMs on M. aeruginosa. It can be seen from the changes in cell morphology and structure that microspheres stress triggers apoptosis-like cell death, and the cell membrane is intact effectively preventing the leakage of microcystin-LR (MC-LR). Moreover, the down-regulation of mcyD gene also played major role in less extracellular MC-LR than intracellular MC-LR. It was concluded that the ASMs will not cause secondary ecological hazards while killing algae cells and have good application prospects.


Asunto(s)
Microcystis , Estructura Molecular , Membrana Celular , Oxidantes/farmacología , Microcistinas/metabolismo , Expresión Génica
10.
Materials (Basel) ; 15(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500189

RESUMEN

In this study, thermophysical and mechanical tests were conducted on sandstone samples from room temperature to 1000 °C. Based on the test results, the thermophysical properties (such as specific heat capacity, thermal conductivity, and thermal expansion coefficient) of sandstone after high-temperature treatment and the variations of mechanical properties (including peak strength, peak strain, elastic modulus, and whole stress-strain curve) with temperature were analyzed. Indeed, the deterioration law of sandstone after high-temperature treatment was also explored with the aid of a scanning electron microscope (SEM). The results show that with the increase in temperature, the specific heat capacity and thermal expansion coefficient of sandstone samples after high-temperature treatment increase first and then decrease, while the thermal conductivity gradually decreases. The range from room temperature to 1000 °C witnesses the following changes: As temperature rises, the peak strength of sandstone rises initially and falls subsequently; the elastic modulus drops; the peak strain increases at an accelerated rate. Temperature change has a significant effect on the deterioration rules of sandstone, and the increase in temperature contributes to the transition in the failure mode of sandstone from brittle failure to ductile failure. The experimental study on the thermophysical and mechanical properties of sandstone under the action of high temperature and overburden pressure has a guiding significance for the site selection and safety evaluation of UCG projects.

11.
Environ Pollut ; 313: 119997, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35995295

RESUMEN

Colony formation is an essential stage of cyanobacterial blooms. High calcium concentration can promote Microcystis aeruginosa aggregation behavior, but the mechanism of colony formation caused by calcium has rarely been reported. In this study, high calcium-induced colony formation was identified as a shift from cell adhesion to cell division, rather than only cell adhesion as previously thought. Algae responded to this calcium-induced environmental pressure by aggregating and forming colonies. Algal cells initially secreted large quantities of extracellular polysaccharides (EPS) and rapidly aggregated by cell adhesion. The highest aggregation proportion was up to 68.93%. However, high calcium concentrations cannot completely inhibit algal cell growth, but only delay the algae into the rapid growth phase. With adaption to calcium and existing high EPS content, the daughter cells reduced EPS synthesis and the aggregation proportion decreased. The increasing growth rate was also responsible for the decreased xylose content in EPS. The mechanism of colony formation changed to cell division. The downregulation of genes related to EPS secretion also supported this hypothesis. Overall, these results can benefit for our understanding of cyanobacterial bloom formation.


Asunto(s)
Cianobacterias , Microcystis , Calcio , Adhesión Celular , División Celular , Xilosa
12.
Environ Sci Pollut Res Int ; 29(31): 47025-47035, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35175518

RESUMEN

Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.


Asunto(s)
Cianobacterias , Viento , China , Ecosistema , Eutrofización , Lagos/microbiología
13.
Bull Environ Contam Toxicol ; 107(2): 343-350, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34251462

RESUMEN

The inhibitory mechanisms of artemisinin anti-algae sustained-release granules (AASG) on algal cells at cytoplasmic level were investigated. The results showed that 0.2 g L-1 AASG could effectively inhibit the growth of Microcystis aeruginosa (M.aeruginosa). The stress of 0.2 g L-1 AASG changed the excitation energy distribution pattern of Photosystem II (PSII) of algal cells, which showed the increase of heat dissipation share and the inhibition of physiological activities related to PSII. At the same time, AASG induced a large amount of reactive oxygen species (ROS), which aggravated the membrane lipid peroxidation and caused serious damage to algae cell membrane. AASG also resulted in the decrease of esterase activity and alkaline phosphatase activity (APA) in algal cells. Results showed that AASG inhibited algal growth by exerting adverse effects on PSII, ROS and metabolic activity of M.aeruginosa.


Asunto(s)
Artemisininas , Microcystis , Preparaciones de Acción Retardada , Complejo de Proteína del Fotosistema II , Especies Reactivas de Oxígeno
14.
Environ Sci Pollut Res Int ; 28(33): 45253-45265, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33861424

RESUMEN

To investigate the effects of an allelochemical artemisinin extracted from Artemisia annua (A. annua) on cell growth, death mode, and microcystin-LR (MC-LR) changes of Microcystis aeruginosa (M. aeruginosa), a series of morphological and biochemical characteristics were studied. The results showed that artemisinin could inhibit the growth of M. aeruginosa and reduce the content of phycobiliprotein. Under the allelopathy of artemisinin, algae cells deformed due to swelling, which caused cell membranes to rupture and cell contents to leak. FDA/PI double-staining results showed that 15.10-94.90% of algae cells experienced the death mode of necrosis-like. Moreover, there were 8.35-14.50% of algae cells undergoing programmed cell death, but their caspase-3-like protease activity remained unchanged, which may mean that algae cells were not experiencing caspase-dependent apoptosis under artemisinin stress. Attacked by artemisinin directly, both intracellular and extracellular MC-LR increased sharply with the upregulation of mcyB, mcyD, and mcyH. The upregulation multiple of mcyH suggested that M. aeruginosa could accelerate transportation of algal toxin under adverse conditions of artemisinin. Artemisinin not only can inhibit the growth of M. aeruginosa but it also causes the accelerated release and increase of microcystin-LR. These imply that the application of artemisinin should be reconsidered in practical water bodies.


Asunto(s)
Artemisia annua , Artemisininas , Microcystis , Toxinas Marinas , Microcistinas , Feromonas
15.
J Hazard Mater ; 401: 123372, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32645542

RESUMEN

To investigate the deleterious ecological effects of cyanobacteria on submerged macrophytes, this study investigated the effects of different concentrations of fresh cyanobacteria (FC) and cyanobacteria decomposition solution (CDS) on an experimental group of submerged macrophytes (Vallisneria natans (Lour.) Hara and Myriophyllum verticillatum Linn.). The results showed that FC and CDS not only lead to decrease in biomass and significant changes in enzyme activity and chlorophyll content in tissue, but also affected the permeability of cell membranes. The extent of damage was in the order CDS > FC, and the comprehensive stress resistance of Vallisneria natans (2.994) was more than that of Myriophyllum verticillatum (2.895). In addition, semi-permeable membranes can reduce plant damage by FC and CDS, but cannot completely prevent it. FC and CDS mainly affected the relative distribution of microbial genera on the surface of aquatic plants (p < 0.05). Furthermore, CDS caused irreversible damage to plant cells and induced programmed cell death (PCD) of plants to accelerate their decline. Therefore, FC and CDS may be one of the main reasons for the decline in submerged vegetation. This study provides a scientific basis for evaluating the harmful effects of cyanobacteria on submerged macrophytes.


Asunto(s)
Cianobacterias , Hydrocharitaceae , Biomasa , Clorofila
16.
Environ Sci Pollut Res Int ; 27(11): 12624-12634, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32006333

RESUMEN

Artemisinin sustained-release microspheres (ASMs) with long-term inhibition effects (> 40 days) on harmful freshwater bloom-forming cyanobacteria have been found in previous studies, but the inhibition mechanism is not completely clear. In the present study, we examined the growth effect of ASMs on Microcystis aeruginosa (M. aeruginosa) cells at different physiological stages. Growth experiments indicated that M. aeruginosa of different initial densities could be inhibited immediately and chlorophyll-a content both showed significant decreases following exposure of cyanobacteria to optimal dosage of ASMs for 20 days. The algicidal mechanism of ASMs was tested through a suite of physiological parameters (membrane permeability, antioxidant enzymes activity, and lipid peroxidation). The rise of cell membrane permeability indices (intracellular protein, nucleic acid contents, and conductivity) showed that the cellular membrane structure of M. aeruginosa was attacked by ASMs directly causing the leakage of cytoplasm. Antioxidant enzyme activity was a sensitive indicator of the impacts of ASMs which showed a significant downtrend after a few days. ASMs caused a great increase in •O2- and malondialdehyde (MDA) level of the algal cells which indicated the increase in lipid peroxidation of M. aeruginosa. Irreversible membrane damage induced by ASMs via the oxidation of ROS may be an important factor responsible for the algicidal mechanism of ASMs on M. aeruginosa cells. The application of ASMs might provide a new direction to control M. aeruginosa, especially before the exponential phase according to the optimal economy and inhibition effect. Graphical abstract.


Asunto(s)
Artemisininas , Microcystis , Membrana Celular , Preparaciones de Acción Retardada , Microesferas
17.
Chemosphere ; 212: 654-661, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30173112

RESUMEN

Environment-friendly algaecides based on allelopathy have been extensively studied to control harmful algal blooms (HABs). The inhibitory effects of linoleic acid (LA) sustained-release microspheres on different cell densities of Microcystis aeruginosa (M. aeruginosa) at different growth phases were studied. The results showed that the growth of M. aeruginosa could be inhibited within 4 days and the constant inhibitory rate with initial algal density of 8 × 105 cells∙mL-1 (exponential phase) was up to 96% compared with control. The chlorophyll-a content in the treatment group had the same change trend with the algal density and declined significantly at day 20th, which suggested that the microspheres could promote the degradation of chlorophyll-a. The activities of superoxide dismutase (SOD) and catalase (CAT) increased gradually within 5 days but then declined sharply, which indicated that LA microspheres could cause oxidative damage to M. aeruginosa during the process of inhibition and reduce the activities of antioxidant enzymes. In addition, the concentration of oxygen free radical (O2-) increased at day 10th and rose constantly, and the content of malodialdehyde (MDA) increased to 2.7 times as much as control at day 20th. Furthermore, the content of protein, nucleic acid and the conductivity in culture solution showed a significant rise. These results showed that algal cell membrane lipid peroxidation occurred and the membrane permeability increased, accompanied by the damage of cell membrane. To sum up, the destruction of algal cell membrane is the main mechanism of LA microspheres inhibiting algal growth.


Asunto(s)
Ácido Linoleico/química , Microcystis/química , Microesferas , Oxidación-Reducción
18.
Adv Mater ; 26(9): 1434-8, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24734299

RESUMEN

La0.3 Sr0.7 FeO3-δ films undergo dramatic changes in electronic and optical properties due to reversible oxygen loss induced by low-temperature heating. This mechanism to control the functional properties may serve as a platform for new devices or sensors in which external stimuli are used to dynamically control the composition of complex oxide heterostructures.

19.
Int J Environ Res Public Health ; 11(1): 1094-105, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24441510

RESUMEN

Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.


Asunto(s)
Arachis/microbiología , Bacillus/fisiología , Fusarium , Control Biológico de Vectores , Triticum/microbiología , Bacillus/aislamiento & purificación , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Tricotecenos/antagonistas & inhibidores , Tricotecenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA