Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Small ; : e2311741, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470196

RESUMEN

Hydrogen (H2 ) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2 H4 ) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2 ) in 0.1 m N2 H4 /1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.

2.
Nanomicro Lett ; 16(1): 114, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353764

RESUMEN

Quasi-solid electrolytes (QSEs) based on nanoporous materials are promising candidates to construct high-performance Li-metal batteries (LMBs). However, simultaneously boosting the ionic conductivity (σ) and lithium-ion transference number (t+) of liquid electrolyte confined in porous matrix remains challenging. Herein, we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts. This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li+ conductivity of 1.5 × 10-4 S cm-1 with t+ of 0.71. A partially de-solvated structure and preference distribution of Li+ near the Lewis base O atoms were depicted by MD simulations. Meanwhile, the nanoporous structure enabled efficient ion flux regulation, promoting the homogenous deposition of Li+. When incorporated in Li||Cu cells, the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%, surpassing that of liquid electrolytes (96.3%). Additionally, NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C. These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs.

3.
Nat Commun ; 15(1): 1186, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332033

RESUMEN

In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.

4.
Small ; 20(12): e2307637, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946399

RESUMEN

The electrochemical conversion of carbon dioxide (CO2) into ethanol with high added value has attracted increasing attention. Here, an efficient catalyst with abundant Cu2O/Ag interfaces for ethanol production under pulsed CO2 electrolysis is reported, which is composed of Cu2O hollow nanospheres loaded with Ag nanoparticles (named as se-Cu2O/Ag). The CO2-to-ethanol Faradaic efficiency is prominently improved to 46.3% at a partial current density up to 417 mA cm-2 under pulsed electrolysis conditions in a neutral flow cell, notably outperforming conventional Cu catalysts during static electrolysis. In situ spectroscopy reveals the stabilized Cu+ species of se-Cu2O/Ag during pulsed electrolysis and the enhanced adsorbed CO intermediate (*CO)coverage on the heterostructured catalyst. Density functional theory (DFT) calculations further confirm that the Cu2O/Ag heterostructure stabilizes the *CO intermediate and promotes the coupling of *CO and adsorbed CH intermediate (*CH). Meanwhile, the stable Cu+ species under pulsed electrolysis favor the hydrogenation of adsorbed HCCOH intermediate (*HCCOH) to adsorbed HCCHOH intermediate (*HCCHOH) on the pathway to ethanol. The synergistic effect between the enhanced generation of *CO on Cu2O/Ag and regenerated Cu+ species under pulsed electrolysis steers the reaction pathway toward ethanol. This work provides some insights into selective ethanol production from CO2 electroreduction via combined catalyst design and non-steady state electrolysis.

5.
J Am Chem Soc ; 145(48): 26213-26221, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37944031

RESUMEN

Electrochemically converting CO2 into specified high-value products is critical for carbon neutral economics. However, governing the product distribution of the CO2 electroreduction on Cu-based catalysts remains challenging. Herein, we put forward an anion enrichment strategy to efficiently dictate the route of *CO reduction by a pulsed electrolysis strategy. Upon periodically applying a positive potential on the cathode, the anion concentration in the vicinity of the electrode increases apparently. By adopting KF, KCl, and KHCO3 as electrolytes, the dominant CO2 electroreduction product on commercial Cu foil can be tuned into CO (53% ± 2.5), C2+ (76.6 ± 2.1%), and CH4 (42.6 ± 2.1%) under pulsed electrolysis. Notably, one can delicately tailor the ratios of CO/CH4, CH4/C2+, and C2+/CO by simply changing the composition of the electrolyte. Density functional theory calculations demonstrate that locally enriched anions can affect the key CO2RR intermediates in different ways owing to their specific electronegativity and volume, which leads to the distinct selectivity. The present study highlights the importance of tuning ionic species at the electrode-electrolyte interface for customizing the CO2 electroreduction products.

6.
Small ; 19(39): e2302530, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259279

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) is a promising strategy for waste CO2 utilization and intermittent electricity storage. Herein, it is reported that bimetallic Cu/Pd catalysts with enhanced *CO affinity show a promoted CO2 RR performance for multi-carbon (C2+) production under industry-relevant high current density. Especially, bimetallic Cu/Pd-1% catalyst shows an outstanding CO2 -to-C2+ conversion with 66.2% in Faradaic efficiency (FE) and 463.2 mA cm-2 in partial current density. An increment in the FE ratios of C2+ products to CO  for Cu/Pd-1% catalyst further illuminates a preferable C2+ production. In situ Raman spectra reveal that the atop-bounded CO is dominated by low-frequency band CO on Cu/Pd-1% that leads to C2+ products on bimetallic catalysts, in contrast to the majority of high-frequency band CO on Cu that favors the formation of CO. Density function theory calculation confirms that bimetallic Cu/Pd catalyst enhances the *CO adsorption and reduces the Gibbs free energy of the CC coupling process, thereby favoring the formation of C2+ products.

7.
iScience ; 26(5): 106642, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37182107

RESUMEN

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage. Increasing the energy density of SIBs demands anode materials with high gravimetric and volumetric capacity. To overcome the drawback of low density of conventional nanosized or porous electrode materials, compact heterostructured particles are developed in this work with improved Na storage capacity by volume, which are composed of SnO2 nanoparticles loaded into nanoporous TiO2 followed by carbon coating. The resulted TiO2@SnO2@C (denoted as TSC) particles inherit the structural integrity of TiO2 and extra capacity contribution from SnO2, delivering a volumetric capacity of 393 mAh cm-3 notably higher than that of porous TiO2 and commercial hard carbon. The heterogeneous interface between TiO2 and SnO2 is believed to promote the charge transfer and facilitate the redox reactions in the compact heterogeneous particles. This work demonstrates a useful strategy for electrode materials with high volumetric capacity.

8.
Nanomicro Lett ; 15(1): 56, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853520

RESUMEN

The practical applications of zinc metal batteries are plagued by the dendritic propagation of its metal anodes due to the limited transfer rate of charge and mass at the electrode/electrolyte interphase. To enhance the reversibility of Zn metal, a quasi-solid interphase composed by defective metal-organic framework (MOF) nanoparticles (D-UiO-66) and two kinds of zinc salts electrolytes is fabricated on the Zn surface served as a zinc ions reservoir. Particularly, anions in the aqueous electrolytes could be spontaneously anchored onto the Lewis acidic sites in defective MOF channels. With the synergistic effect between the MOF channels and the anchored anions, Zn2+ transport is prompted significantly. Simultaneously, such quasi-solid interphase boost charge and mass transfer of Zn2+, leading to a high zinc transference number, good ionic conductivity, and high Zn2+ concentration near the anode, which mitigates Zn dendrite growth obviously. Encouragingly, unprecedented average coulombic efficiency of 99.8% is achieved in the Zn||Cu cell with the proposed quasi-solid interphase. The cycling performance of D-UiO-66@Zn||MnO2 (~ 92.9% capacity retention after 2000 cycles) and D-UiO-66@Zn||NH4V4O10 (~ 84.0% capacity retention after 800 cycles) prove the feasibility of the quasi-solid interphase.

9.
Small ; 19(16): e2206768, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683212

RESUMEN

Developing efficient oxygen evolution reaction (OER) electrocatalysts for seawater electrolysis is still a big challenge. Herein, a facile one-pot approach is reported to synthesize RuO2 -incorporated NiFe-metal organic framework (RuO2 /NiFe-MOF) with unique nanobrick-nanosheet heterostructure as precatalyst. Driven by electric field, the RuO2 /NiFe-MOF dynamically reconstructs into RuO2 nanoparticles-anchored NiFe oxy/hydroxide nanosheets (RuO2 /NiFeOOH) with coherent interface, during which the dissolution and redeposition of RuO2 are witnessed. Owing to the synergistic interaction between RuO2 and NiFeOOH, the as-reconstructed RuO2 /NiFeOOH exhibits outstanding alkaline OER activity with an ultralow overpotential of 187.6 mV at 10 mA cm-2 and a small Tafel slope of 31.9 mV dec-1 and excellent durability at high current densities of 840 and 1040 mA cm-2 in 1 m potassium hydroxide (KOH). When evaluated for seawater oxidation, the RuO2 /NiFeOOH only needs a low overpotential of 326.2 mV to achieve 500 mA cm-2 and can continuously catalyze OER at 500 mA cm-2 for 100 h with negligible activity degradation. Density function theory calculations reveal that the presence of strong interaction and enhanced charge transfer along the coherent interface between RuO2 and NiFeOOH ensures improved OER activity and stability.

10.
Chem Commun (Camb) ; 58(98): 13656-13659, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36412199

RESUMEN

Mesoporous silicas tethered with anions were developed as quasi-solid electrolytes for Li-metal batteries. The high grafted density of trifluoromethylsulfonyl (-NTf-) groups and their uniformly distributed negative charge endow MCM41-NLiTf with a room temperature single Li-ion conductivity of up to 2.4 × 10-4 S cm-1, which enables stable cycling of LFP‖Li batteries.

11.
STAR Protoc ; 3(3): 101637, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36042880

RESUMEN

Heterostructured catalysts based on Cu and oxides are promising for the efficient conversion of CO2 to multi-carbon products. In this protocol, we describe the fabrication and characterization of Cu/oxide heterostructured catalysts and the evaluation approach of electrochemical CO2 reduction reaction (CO2RR) performance in an H-type cell. We also provide the details of in situ surface-enhanced Raman measurement and theoretical calculations. The protocol can be useful for constructing self-supported electrodes and assessing the CO2RR performance of as-fabricated electrodes. For complete details on the use and execution of this protocol, please refer to Li et al. (2022).


Asunto(s)
Dióxido de Carbono , Óxidos , Catálisis , Electrodos
12.
Nanomicro Lett ; 14(1): 134, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699835

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to multi-carbon products would simultaneously reduce CO2 emission and produce high-value chemicals. Herein, we report Cu electrodes modified by metal-organic framework (MOF) exhibiting enhanced electrocatalytic performance to convert CO2 into ethylene and ethanol. The Zr-based MOF, UiO-66 would in situ transform into amorphous ZrOx nanoparticles (a-ZrOx), constructing a-ZrOx/Cu hetero-interface as a dual-site catalyst. The Faradaic efficiency of multi-carbon (C2+) products for optimal UiO-66-coated Cu (0.5-UiO/Cu) electrode reaches a high value of 74% at - 1.05 V versus RHE. The intrinsic activity for C2+ products on 0.5-UiO/Cu electrode is about two times higher than that of Cu foil. In situ surface-enhanced Raman spectra demonstrate that UiO-66-derived a-ZrOx coating can promote the stabilization of atop-bound CO* intermediates on Cu surface during CO2 electrolysis, leading to increased CO* coverage and facilitating the C-C coupling process. The present study gives new insights into tailoring the adsorption configurations of CO2RR intermediate by designing dual-site electrocatalysts with hetero-interfaces.

13.
Small ; 18(43): e2106719, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35182009

RESUMEN

Recycling spent lithium-ion batteries (LIBs) is an urgent task in view of the resource shortage and environmental concerns. Here, a facile ternary molten salt approach is presented for efficiently regenerating the LiNi0.5 Co0.2 Mn0.3 O2 (NCM523) cathode of spent LIBs. Such an approach involves the treatment of spent cathode powder in the ternary molten salt at a moderate temperature (400 °C) and subsequent annealing in oxygen. The Li loss and degraded phases in spent NCM that cause the capacity decay can be fully remedied after the regeneration process. As a result, the regenerated cathode delivers a reversible capacity of 160 mAh g-1 at 0.5 C with retention of 93.7% after 100 cycles and maintains a high capacity of 132 mAh g-1 at a high rate of 5 C. The electrochemical performance of regenerated NCM cathode is compared favorably to the fresh NCM cathode, which demonstrates the feasibility of the molten salt approach to directly regenerate spent NCM cathode.

14.
Nat Commun ; 11(1): 5215, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060606

RESUMEN

The sluggish electrochemical kinetics of sulfur species has impeded the wide adoption of lithium-sulfur battery, which is one of the most promising candidates for next-generation energy storage system. Here, we present the electronic and geometric structures of all possible sulfur species and construct an electronic energy diagram to unveil their reaction pathways in batteries, as well as the molecular origin of their sluggish kinetics. By decoupling the contradictory requirements of accelerating charging and discharging processes, we select two pseudocapacitive oxides as electron-ion source and drain to enable the efficient transport of electron/Li+ to and from sulfur intermediates respectively. After incorporating dual oxides, the electrochemical kinetics of sulfur cathode is significantly accelerated. This strategy, which couples a fast-electrochemical reaction with a spontaneous chemical reaction to bypass a slow-electrochemical reaction pathway, offers a solution to accelerate an electrochemical reaction, providing new perspectives for the development of high-energy battery systems.

15.
ACS Appl Mater Interfaces ; 12(39): 43824-43832, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32896128

RESUMEN

A new family of solid-like electrolytes was developed by infiltrating MIL-100(Al), an electrochemically stable metal-organic-framework (MOF) material, with liquid electrolytes that contain cations from the 3rd period (Na+, Mg2+, and Al3+) and the 1st group (Li+, Na+, K+, and Cs+). The anions were immobilized within the MOF scaffolds upon complexing with the open metal sites, allowing effective transport of the cations in the nanoporous channels with high conductivity (up to 1 mS cm-1) and low activation energy (down to 0.2 eV). This general approach enables the fabrication of superior conductive solid-like electrolytes beyond lithium ions.

16.
ACS Appl Mater Interfaces ; 12(35): 39127-39134, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805915

RESUMEN

Silicon is one of the most promising anode materials for lithium-ion batteries due to its high theoretical capacity and low cost. However, significant capacity fading caused by severe structural degradation during cycling limits its practical implication. To overcome this barrier, we design a covalently bonded nanocomposite of silicon and poly(vinyl alcohol) (Si-PVA) by high-energy ball-milling of a mixture of micron-sized Si and PVA. The obtained Si nanoparticles are wrapped by resilient PVA coatings that covalently bond to the Si particles. In such nanostructures, the soft PVA coatings can accommodate the volume change of the Si particles during repeated lithiation and delithiation. Simultaneously, as formed covalent bonds enhance the mechanical strength of the coatings. Due to the significantly improved structural stability, the Si-PVA composite delivers a lifespan of 100 cycles with a high capacity of 1526 mAh g-1. In addition, a high initial Coulombic efficiency of over 86% and an average value of 99.2% in subsequent cycles can be achieved. This reactive ball-milling strategy provides a low-cost and scalable route to fabricate high-performance anode materials.

17.
J Mater Chem B ; 8(17): 3929-3938, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32232281

RESUMEN

Developing drug delivery platforms that can modulate a tumor microenvironment and deliver multiple therapeutics to targeted tumors is critical for efficient cancer treatment. Achieving these platforms still remains a great challenge. Herein, biodegradable nanocapsules based on MnFe hydroxides (H-MnFe(OH)x) have been developed as a new type of cargo delivery with high loading capacity and catalytic activity, enabling synergetic therapy with promoted efficacy by relieving hypoxia in tumor tissues. As a proof of concept, a photosensitizer (indocyanine green, ICG) and a chemotherapeutic drug (doxorubicin, DOX) are co-loaded in nanocapsules and selectively released upon degradation of the nanocapsules in the acidic tumor microenvironment, and are promoted by near infrared irradiation. Meanwhile, Mn2+/Fe3+ ions released from the degradation of nanocapsules catalyze the conversion of H2O2 in a tumor microenvironment into oxygen, which modulates tumor hypoxia and dramatically boosts multimodal therapies. Remarkable synergistic anticancer outcomes have been demonstrated both in vitro and in vivo, paving the way towards future multifunctional therapeutic platforms.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Verde de Indocianina/farmacología , Fármacos Fotosensibilizantes/farmacología , Animales , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/síntesis química , Doxorrubicina/química , Femenino , Humanos , Hidróxidos/química , Hidróxidos/farmacología , Verde de Indocianina/química , Hierro/química , Hierro/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Manganeso/química , Manganeso/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanocápsulas/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Terapia Fototérmica , Porosidad , Propiedades de Superficie , Microambiente Tumoral/efectos de los fármacos
18.
Nat Commun ; 11(1): 1191, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132527

RESUMEN

Proton exchange membrane fuel cells have been regarded as the most promising candidate for fuel cell vehicles and tools. Their broader adaption, however, has been impeded by cost and lifetime. By integrating a thin layer of tungsten oxide within the anode, which serves as a rapid-response hydrogen reservoir, oxygen scavenger, sensor for power demand, and regulator for hydrogen-disassociation reaction, we herein report proton exchange membrane fuel cells with significantly enhanced power performance for transient operation and low humidified conditions, as well as improved durability against adverse operating conditions. Meanwhile, the enhanced power performance minimizes the use of auxiliary energy-storage systems and reduces costs. Scale fabrication of such devices can be readily achieved based on the current fabrication techniques with negligible extra expense. This work provides proton exchange membrane fuel cells with enhanced power performance, improved durability, prolonged lifetime, and reduced cost for automotive and other applications.

19.
Nanomicro Lett ; 12(1): 176, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34138174

RESUMEN

A robust solid-electrolyte interphase (SEI) enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency. However, the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling. Herein, we demonstrate nanocapsules made from metal-organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte. The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3. Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling. As a result, lifespan of thin Li anode in 50 µm, which experiences drastic volume change and repeated SEI formation during cycling, has been notably improved. By pairing with an industry-level thick LiCoO2 cathode, practical Li-metal full cell demonstrates a remarkable capacity retention of 90% after 240 cycles, in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.

20.
Adv Mater ; 32(7): e1901349, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31879997

RESUMEN

Electrochemical water splitting is considered as a promising approach to produce clean and sustainable hydrogen fuel. As a new class of nanomaterials with high ratio of surface atoms and tunable composition and electronic structure, metal clusters are promising candidates as catalysts. Here, a new strategy is demonstrated to synthesize active and stable Pt-based electrocatalysts for hydrogen evolution by confining Pt clusters in hollow mesoporous carbon spheres (Pt5 /HMCS). Such a structure would effectively stabilize the Pt clusters during the ligand removal process, leading to remarkable electrocatalytic performance for hydrogen production in both acidic and alkaline solutions. Particularly, the optimal Pt5 /HMCS electrocatalyst exhibits 12 times the mass activity of Pt in commercial Pt/C catalyst with similar Pt loading. This study exemplifies a simple yet effective approach to improve the cost effectiveness of precious-metal-based catalysts with stabilized metal clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA