Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631698

RESUMEN

The accurate voltage measurement of distribution networks is of great significance in power dispatching and fault diagnosis. Voltage sensors based on the spatial electric field effect do not require grounding, which provides the possibility for the distributed measurement of transmission line voltages. However, the divider ratio of suspension grounding voltage sensors is affected by the height between the sensor and the ground, as well as the distance between the sensor and the telegraph pole. In this paper, a self-calibration method based on internal capacitance transformation is proposed to realize the on-line calibration of suspension grounding voltage sensors. The calibration is accomplished by switching different parameters in the conditioning circuit, and the calibration process does not require power failure or known input excitation. In addition, the impact of electric fields in the other two phases of three-phase transmission lines on measurement through simulation research is quantified in this paper. In order to reduce the impact of interference electric fields, an equipotential shielding structure is designed. The circuit topology and probe prototype have been developed and testing has been conducted in laboratory conditions; the experimental results show that the maximum relative error of voltage amplitude is 1.65%, and the phase relative error is 0.94%. The measurement accuracy is not limited by the height to ground or the distance to the telegraph pole. In addition, in the application of an equipotential shielding probe, the maximum deviation of measured voltage is 0.7% with and without interference electric fields.

3.
BMC Microbiol ; 21(1): 245, 2021 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-34511061

RESUMEN

BACKGROUND: Bacterial abortive infection (Abi) systems are type IV toxin-antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. RESULTS: A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). CONCLUSIONS: M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Mesorhizobium/genética , Nodulación de la Raíz de la Planta , Estrés Fisiológico/genética , Factores de Transcripción/genética , Planta del Astrágalo/microbiología , Proteínas Bacterianas/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo
4.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277272

RESUMEN

Glutaredoxins (Grx) are redoxin family proteins that reduce disulfides and mixed disulfides between glutathione and proteins. Rhizobium leguminosarum bv. Viciae 3841 contains three genes coding for glutaredoxins: RL4289 (grxA) codes for a dithiolic glutaredoxin, RL2615 (grxB) codes for a monothiol glutaredoxin, while RL4261 (grxC) codes for a glutaredoxin-like NrdH protein. We generated mutants interrupted in one, two, or three glutaredoxin genes. These mutants had no obvious differences in growth phenotypes from the wild type RL3841. However, while a mutant of grxC did not affect the antioxidant or symbiotic capacities of R. leguminosarum, grxA-derived or grxB mutants decreased antioxidant and nitrogen fixation capacities. Furthermore, grxA mutants were severely impaired in rhizosphere colonization, and formed smaller nodules with defects of bacteroid differentiation, whereas nodules induced by grxB mutants contained abnormally thick cortices and prematurely senescent bacteroids. The grx triple mutant had the greatest defect in antioxidant and symbiotic capacities of R. leguminosarum and quantitative proteomics revealed it had 56 up-regulated and 81 down-regulated proteins relative to wildtype. Of these proteins, twenty-eight are involved in transporter activity, twenty are related to stress response and virulence, and sixteen are involved in amino acid metabolism. Overall, R. leguminosarum glutaredoxins behave as antioxidant proteins mediating root nodule symbiosis.IMPORTANCE Glutaredoxin catalyzes glutathionylation/deglutathionylation reactions, protects SH-groups from oxidation and restores functionally active thiols. Three glutaredoxins exist in R. leguminosarum and their properties were investigated in free-living bacteria and during nitrogen-fixing symbiosis. All the glutaredoxins were necessary for oxidative stress defense. Dithiol GrxA affects nodulation and nitrogen fixation of bacteroids by altering deglutathionylation reactions, monothiol GrxB is involved in symbiotic nitrogen fixation by regulating Fe-S cluster biogenesis, and GrxC may participate in symbiosis by an unknown mechanism. Proteome analysis provides clues to explain the differences between the grx triple mutant and wild-type nodules.

5.
Front Microbiol ; 12: 774051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975799

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2020.00394.].

6.
Front Microbiol ; 11: 394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265862

RESUMEN

GmcA is a FAD-containing enzyme belonging to the GMC (glucose-methanol-choline oxidase) family of oxidoreductases. A mutation in the Rhizobium leguminosarum gmcA gene was generated by homologous recombination. The mutation in gmcA did not affect the growth of R. leguminosarum, but it displayed decreased antioxidative capacity at H2O2 conditions higher than 5 mM. The gmcA mutant strain displayed no difference of glutathione reductase activity, but significantly lower level of the glutathione peroxidase activity than the wild type. Although the gmcA mutant was able to induce the formation of nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 30% reduction in the nitrogen fixation capacity. The observation on ultrastructure of 4-week pea nodules showed that the mutant bacteroids tended to start senescence earlier and accumulate poly-ß-hydroxybutyrate (PHB) granules. In addition, the gmcA mutant was severely impaired in rhizosphere colonization. Real-time quantitative PCR showed that the gmcA gene expression was significantly up-regulated in all the detected stages of nodule development, and statistically significant decreases in the expression of the redoxin genes katG, katE, and ohrB were found in gmcA mutant bacteroids. LC-MS/MS analysis quantitative proteomics techniques were employed to compare differential gmcA mutant root bacteroids in response to the wild type infection. Sixty differentially expressed proteins were identified including 33 up-regulated and 27 down-regulated proteins. By sorting the identified proteins according to metabolic function, 15 proteins were transporter protein, 12 proteins were related to stress response and virulence, and 9 proteins were related to transcription factor activity. Moreover, nine proteins related to amino acid metabolism were over-expressed.

7.
Curr Microbiol ; 77(1): 1-10, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31624868

RESUMEN

Legumes interact with symbiotic rhizobia to produce nitrogen-fixation root nodules under nitrogen-limiting conditions. The contribution of glutathione (GSH) to this symbiosis and anti-oxidative damage was investigated using the M. huakuii gshB (encoding GSH synthetase) mutant. The gshB mutant grew poorly with different monosaccharides, including glucose, sucrose, fructose, maltose, or mannitol, as sole sources of carbon. The antioxidative capacity of gshB mutant was significantly decreased by these treatments with H2O2 under the lower concentrations and cumene hydroperoxide (CUOOH) under the higher concentrations, indicating that GSH plays different roles in response to organic peroxide and inorganic peroxide. The gshB mutant strain displayed no difference in catalase activity, but significantly lower levels of the peroxidase activity and the glutathione reductase activity than the wild type. The same level of catalase activity could be associated with upregulation of the transcriptional activity of the catalase genes under H2O2-induced conditions. The nodules infected by the gshB mutant were severely impaired in abnormal nodules, and showed a nodulation phenotype coupled to a 60% reduction in the nitrogen fixation capacity. A 20-fold decrease in the expression of two nitrogenase genes, nifH and nifD, is observed in the nodules induced by gshB mutant strain. The symbiotic deficiencies were linked to bacteroid early senescence.


Asunto(s)
Glutatión/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Acetileno/metabolismo , Derivados del Benceno/farmacología , Fabaceae/efectos de los fármacos , Fabaceae/genética , Fabaceae/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/farmacología , Mesorhizobium/metabolismo , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA