RESUMEN
Tartrate-resistant acid phosphatase (TRAP) serum levels reflect osteoclast number, bone remodeling activity, and fracture risk. Deletion or loss of function of TRAP results in short stature in mice and man. Yet, the impact and mechanisms of TRAP for the site- and sex-specific development of bone and cartilage is not well understood. Here, we use a global TRAP knockout (TRAPKO) and wildtype littermate control (WT) mice of both sexes to investigate TRAP as a possible sex- and site-specific regulator of bone and growth plate development. TRAPKO mice of both sexes weighed less and had shorter tibial length than their WT, features that were more accentuated in male than female TRAPKO mice. These changes were not associated with a general reduction in growth as not all organs displayed a proportionally lower mass, and serum IGF-1 was unchanged. Using µCT and site-specificity analysis of the cortical bone revealed wider proximal tibia, a higher trabecular thickness, and lower trabecular separation in male TRAPKO compared to WT mice, an effect not seen in female mice. Histomorphometric analysis revealed that the growth plate height as well as height of terminal hypertrophic chondrocytes were markedly increased, and the number of columns was decreased in TRAPKO mice of both sexes. These effects were more accentuated in female mice. Proliferation and differentiation of bone marrow derived macrophages into osteoclasts, as well as C-terminal cross links were normal in TRAPKO mice of both sexes. Collectively, our results show that TRAP regulates bone and cartilage development in a sex-and site-specific manner in mice.
Asunto(s)
Hueso Esponjoso , Hueso Cortical , Placa de Crecimiento , Ratones Noqueados , Caracteres Sexuales , Fosfatasa Ácida Tartratorresistente , Animales , Fosfatasa Ácida Tartratorresistente/metabolismo , Femenino , Masculino , Ratones , Osteoclastos/metabolismo , Tamaño de los Órganos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Tibia/metabolismo , Microtomografía por Rayos X , Ratones Endogámicos C57BLRESUMEN
Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.
Asunto(s)
Densidad Ósea , Hueso Esponjoso , Osteoblastos , Animales , Femenino , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Hueso Esponjoso/metabolismo , Hueso Esponjoso/patología , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Noqueados , Osteoblastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/patología , Osteoporosis/metabolismoRESUMEN
It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
Asunto(s)
Inflamación , Osteogénesis , Receptor Toll-Like 2 , Vía de Señalización Wnt , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoblastos/inmunología , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Cráneo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Proteínas Wnt/metabolismoRESUMEN
Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
Asunto(s)
Antebrazo , Fracturas Óseas , Animales , Ratones , Estudio de Asociación del Genoma Completo , Fracturas Óseas/genética , Densidad Ósea/genética , Factores de RiesgoRESUMEN
Mechanical loading enhances bone strength and counteracts arthritis-induced inflammation-mediated bone loss in female mice. It is unknown whether nonsteroidal anti-inflammatory drugs (NSAIDs; eg, COX-2 inhibitors) can reduce inflammation without affecting the loading-associated bone formation in male mice. The aim of this study was to investigate if loading combined with a COX-2 inhibitor (NS-398) could prevent arthritis-induced bone loss and inflammation in male mice. Four-month-old male C57BL/6J mice were subjected to axial tibial mechanical loading three times/week for 2 weeks. Local mono-arthritis was induced with a systemic injection of methylated bovine serum albumin on the first day of loading, followed by a local injection in one knee 1 week later. The arthritis induction, knee swelling, bone architecture, and osteoclast number were evaluated in the hind limbs. C-terminal cross-links as a marker for osteoclast activity was measured in serum. Compared with loading and arthritis alone, loading of the arthritic joint enhanced swelling that was partly counteracted by NS-398. Loading of the arthritic joint enhanced synovitis and articular cartilage damage compared with loading alone. Loading increased cortical bone and counteracted the arthritis-induced decrease in epiphyseal bone. NS-398 did not alter the bone-protective effects of loading. C-terminal cross-links, a bone resorption marker, was increased by arthritis but not loading. In conclusion, loading prevented arthritis-induced epiphyseal and metaphyseal bone loss, and NS-398 reduced knee swelling without affecting the bone-protective effects of loading. If our results can be extrapolated to the human situation, specific COX-2 inhibitors could be used in combination with loading exercise to prevent pain and swelling of the joint without influencing the bone-protective effects of loading. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMEN
Aging is associated with low bone and lean mass as well as alterations in the gut microbiota (GM). In this study, we determined whether the reduced bone mass and relative lean mass observed in old mice could be transferred to healthy young mice by GM transplantation (GMT). GM from old (21-month-old) and young adult (5-month-old) donors was used to colonize germ-free (GF) mice in three separate studies involving still growing 5- or 11-week-old recipients and 17-week-old recipients with minimal bone growth. The GM of the recipient mice was similar to that of the donors, demonstrating successful GMT. GM from old mice did not have statistically significant effects on bone mass or bone strength, but significantly reduced the lean mass percentage of still growing recipient mice when compared with recipients of GM from young adult mice. The levels of propionate in the cecum of mice receiving old donor GM were significantly lower than those in mice receiving young adult donor GM. Bacteroides ovatus was enriched in the microbiota of recipient mice harboring GM from young adult donors. The presence of B. ovatus was not only significantly associated with high lean mass percentage in mice, but also with lean mass adjusted for fat mass in the large human HUNT cohort. In conclusion, GM from old mice reduces lean mass percentage but not bone mass in young, healthy, still growing recipient mice. Future studies are warranted to determine whether GM from young mice improves the musculoskeletal phenotype of frail elderly recipient mice.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Adulto Joven , Humanos , Ratones , Animales , Anciano , Lactante , Trasplante de Microbiota Fecal , Envejecimiento , CiegoRESUMEN
Progesterone serum levels have been identified as a potential predictor for treatment effect in men with advanced prostate cancer, which is an androgen-driven disease. Although progesterone is the most abundant sex steroid in orchiectomized (ORX) male mice, the origins of progesterone in males are unclear. To determine the origins of progesterone and androgens, we first determined the effect of ORX, adrenalectomy (ADX), or both (ORX + ADX) on progesterone levels in multiple male mouse tissues. As expected, intratissue androgen levels were mainly testicular derived. Interestingly, progesterone levels remained high after ORX and ORX + ADX with the highest levels in white adipose tissue and in the gastrointestinal tract. High progesterone levels were observed in mouse chow and exceptionally high progesterone levels were observed in food items such as dairy, eggs, and beef, all derived from female animals of reproductive age. To determine if orally ingested progesterone contributes to tissue levels of progesterone in males, we treated ORX + ADX and sham mice with isotope-labeled progesterone or vehicle by oral gavage. We observed a significant uptake of labeled progesterone in white adipose tissue and prostate, suggesting that dietary progesterone may contribute to tissue levels of progesterone. In conclusion, although adrenal-derived progesterone contributes to intratissue progesterone levels in males, nonadrenal progesterone sources also contribute. We propose that dietary progesterone is absorbed and contributes to intratissue progesterone levels in male mice. We speculate that food with high progesterone content could be a significant source of progesterone in males, possibly with consequences for men undergoing androgen deprivation therapy for prostate cancer.
Asunto(s)
Andrógenos , Neoplasias de la Próstata , Humanos , Bovinos , Ratones , Masculino , Animales , Progesterona , Antagonistas de Andrógenos , Adrenalectomía , OrquiectomíaRESUMEN
Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 µg/mouse/day (low); 0.6 µg/mouse/day (medium)) or supraphysiological (6 µg/mouse/day (high)) doses of E2 (17ß-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.
Asunto(s)
Estradiol , Receptor alfa de Estrógeno , Femenino , Ratones , Animales , Humanos , Receptor alfa de Estrógeno/genética , Estradiol/farmacología , Huesos , Transducción de Señal , Densidad Ósea , Útero , OvariectomíaRESUMEN
BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Densidad Ósea , N-Acetilgalactosaminiltransferasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos , Densidad Ósea/genética , Glucocorticoides/farmacología , Glicosilación , HumanosRESUMEN
Our previous study found dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study aimed to investigate the effects of supplementation of a cheaper combined dietary fiber (CDF, using bamboo shoots fiber and alginate fiber to partially replace KF) from the last 50 days of gestation to parturition on farrowing performance, insulin sensitivity, gut microbiota, and placental function of gilts. Specifically, a total of 135 pregnant gilts with a similar farrowing time were blocked by backfat thickness and body weight on day 65 of gestation (G65d) and assigned to 1 of the 3 dietary treatment groups (n = 45 per group): basal diet (CON), basal diet supplemented with 2% KF or 2% CDF (CDF containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber), respectively. The litter performance, insulin sensitivity and glucose tolerance parameters, placental vessel density, and short-chain fatty acids (SCFAs) levels in feces were assessed. The gut microbiota population in gilts during gestation was also assessed by 16S rDNA gene sequencing. Compared with CON, both KF and CDF treatments not only increased the piglet birth weight (P < 0.05) and piglet vitality (P < 0.01) but also decreased the proportion of piglets with birth weight ≤ 1.2 kg (P < 0.01) and increased the proportion of piglets with birth weight ≥ 1.5 kg (P < 0.01). In addition, KF or CDF supplementation reduced fasting blood insulin level (P < 0.05), homeostasis model assessment-insulin resistance (P < 0.05), serum hemoglobin A1c (P < 0.05), and the level of advanced glycation end products (P < 0.05) at G110d, and increased the placental vascular density (P < 0.05) at farrowing. Meanwhile, KF or CDF supplementation increased microbial diversity (P < 0.05) and SCFAs levels (P < 0.05) in feces at G110d. Notably, the production cost per live-born piglet was lower in CDF group (¥ 36.1) than KF group (¥ 41.3). Overall, KF or CDF supplementation from G65d to farrowing could improve the farrowing performance of gilts possibly by improving insulin sensitivity, regulating gut microbiota and metabolites, and increasing placental vascular density, with higher economic benefits and a similar effect for CDF vs. KF, suggesting the potential of CDF as a cheaper alternative to KF in actual production.
Dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study investigated the impact of 2% konjac flour (KF) and 2% combined dietary fiber (CDF, containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber) supplementation from the last 50 days of gestation to farrowing on farrowing performance, placental function, insulin sensitivity, and gut microbiota of gilts. Results indicated that KF or CDF supplementation during this time could improve the farrowing performance of gilts possibly by improving insulin sensitivity and gut microbiota, and increasing placental vascular density. Meanwhile, CDF could lower the production cost per live-born piglet and have a similar effect to KF, thus a cheaper alternative to KF in actual production. This study facilitates understanding the beneficial effects of KF and non-conventional dietary fiber sources on the reproductive performance of gilts.
Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Enfermedades de los Porcinos , Animales , Embarazo , Porcinos , Femenino , Peso al Nacer , Placenta , Sus scrofa , Parto , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos Volátiles , Fibras de la Dieta , Lactancia/fisiologíaRESUMEN
Estrogen receptor alpha (ERα) signaling has beneficial skeletal effects in males. ERα signaling also affects other tissues, and to find bone-specific treatments, more knowledge regarding tissue-specific ERα signaling is needed. ERα is subjected to posttranslational modifications, including phosphorylation, which can influence ERα function in a tissue-specific manner. To determine the importance of phosphorylation site S122 (corresponding to human ERα site S118) for the skeleton and other tissues, male mice with a S122A mutation were used. Total areal bone mineral density was similar between gonadal intact S122A and WT littermates followed up to 12 months of age, and weights of estrogen-responsive organs normalized for body weight were unchanged between S122A and WT males at both 3 and 12 months of age. Interestingly, 12-month-old S122A males had decreased body weight compared to WT. To investigate if site S122 affects the estrogen response in bone and other tissues, 12-week-old S122A and WT males were orchidectomized (orx) and treated with estradiol (E2) or placebo pellets for four weeks. E2 increased cortical thickness in tibia in both orx WT (+ 60%, p < 0.001) and S122A (+ 45%, p < 0.001) males. However, the E2 effect on cortical thickness was significantly decreased in orx S122A compared to WT mice (- 24%, p < 0.05). In contrast, E2 affected trabecular bone and organ weights similarly in orx S122A and WT males. Thus, ERα phosphorylation site S122 is required for a normal E2 response specifically in cortical bone in male mice, a finding that may have implications for development of future treatments against male osteoporosis.
Asunto(s)
Receptor alfa de Estrógeno , Estrógenos , Humanos , Ratones , Masculino , Animales , Niño , Lactante , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Fosforilación , Estrógenos/farmacología , Huesos/diagnóstico por imagen , Huesos/metabolismo , Estradiol , Peso CorporalRESUMEN
Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.
Asunto(s)
Andrógenos , Dihidrotestosterona , Masculino , Ratones , Animales , Dihidrotestosterona/farmacología , Andrógenos/farmacología , Deshidroepiandrosterona/farmacología , Deshidroepiandrosterona/metabolismo , Testosterona , Suplementos DietéticosRESUMEN
Studies in postmenopausal women and ovariectomized mice show that the probiotic mix Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312 and DSM 15313 (L. Mix) can protect from bone loss caused by sex steroid deficiency. Whether probiotic bacteria can protect bone also in sex steroid-deficient males is less studied. We used the orchiectomized mouse as a model for age-dependent bone loss caused by decreasing sex hormone levels in males. We treated 10-week-old male mice with either vehicle (veh) or L. Mix for 6 weeks, starting 2 weeks before orchiectomy (orx) or sham surgery. Importantly, mice treated with L. Mix had a general increase in total body bone mineral density (BMD) and lean mass (P ≤ 0.05) compared with veh-treated mice. Detailed computer tomography analysis of dissected bones showed increased trabecular BMD of the distal metaphyseal region of the femur in L. Mix compared to veh-treated orx mice (+8.0%, P ≤ 0.05). In the vertebra, L. Mix treatment increased trabecular bone volume fraction BV/TV (+11.5%, P ≤ 0.05) compared to veh in orx mice. Also, L. Mix increased the levels of short-chain fatty acids (SCFAs) such as propionate and acetate and important intermediates in SCFA synthesis such as succinate and lactate in the cecal content of male mice. In conclusion, L. Mix treatment resulted in a general increase in BMD in adult male mice and prevented trabecular bone loss in femur and vertebra of orx mice. These bone protective effects of L. Mix were associated with increased levels of SCFAs in the cecal content of male mice.
Asunto(s)
Enfermedades Óseas Metabólicas , Probióticos , Animales , Densidad Ósea , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/prevención & control , Huesos , Femenino , Fémur/diagnóstico por imagen , Humanos , Masculino , Ratones , Orquiectomía , EsteroidesRESUMEN
The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.
Asunto(s)
Hueso Esponjoso , Simbióticos , Aminoácidos de Cadena Ramificada , Animales , Bacterias , Ácidos Grasos Volátiles , Femenino , Humanos , Ratones , Ovariectomía , Vitamina K 2RESUMEN
Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.
Asunto(s)
Fracturas Óseas , Osteoporosis , Animales , Densidad Ósea , Hueso Esponjoso/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Humanos , Ratones , Osteoporosis/genética , Osteoporosis/metabolismo , Ovariectomía , Trombospondinas/genética , Trombospondinas/farmacologíaRESUMEN
A comprehensive atlas of sex steroid distribution in multiple tissues is currently lacking, and how circulating and tissue sex steroid levels correlate remains unknown. Here, we adapted and validated a gas chromatography tandem mass spectrometry method for simultaneous measurement of testosterone (T), dihydrotestosterone (DHT), androstenedione, progesterone (Prog), estradiol, and estrone in mouse tissues. We then mapped the sex steroid pattern in 10 different endocrine, reproductive, and major body compartment tissues and serum of gonadal intact and orchiectomized (ORX) male mice. In gonadal intact males, high levels of DHT were observed in reproductive tissues, but also in white adipose tissue (WAT). A major part of the total body reservoir of androgens (T and DHT) and Prog was found in WAT. Serum levels of androgens and Prog were strongly correlated with corresponding levels in the brain while only modestly correlated with corresponding levels in WAT. After orchiectomy, the levels of the active androgens T and DHT decreased markedly while Prog levels in male reproductive tissues increased slightly. In ORX mice, Prog was by far the most abundant sex steroid, and, again, WAT constituted the major reservoir of Prog in the body. In conclusion, we present a comprehensive atlas of tissue and serum concentrations of sex hormones in male mice, revealing novel insights in sex steroid distribution. Brain sex steroid levels are well reflected by serum levels and WAT constitutes a large reservoir of sex steroids in male mice. In addition, Prog is the most abundant sex hormone in ORX mice.
Asunto(s)
Hormonas Esteroides Gonadales/análisis , Tejido Adiposo Blanco/química , Androstenodiona/análisis , Animales , Dihidrotestosterona/análisis , Estradiol/análisis , Estrona/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Orquiectomía , Progesterona/análisis , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos , Testosterona/análisis , Distribución TisularRESUMEN
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Asunto(s)
Hueso Esponjoso/metabolismo , Fracturas Óseas/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Trombospondinas/genética , Animales , Densidad Ósea , Hueso Esponjoso/lesiones , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Ratones Noqueados , Ratones Transgénicos , Osteoblastos/citología , Osteoblastos/metabolismo , Factores de Riesgo , Trombospondinas/deficienciaRESUMEN
Obesity has previously been thought to protect bone since high body weight and body mass index are associated with high bone mass. However, some more recent studies suggest that increased adiposity negatively impacts bone mass. Here, we aimed to test whether acute loss of adipose tissue, via adipocyte apoptosis, alters bone mass in age-related obese mice. Adipocyte apoptosis was induced in obese male FAT-ATTAC mice through AP20187 dimerizer-mediated activation of caspase 8 selectively in adipocytes. In a short-term experiment, dimerizer was administered to 5.5 month-old mice that were terminated 2 weeks later. At termination, the total fat mass weighed 58% less in dimerizer-treated mice compared with vehicle-treated controls, but bone mass did not differ. To allow for the detection of long-term effects, we used 9-month-old mice that were terminated six weeks after dimerizer administration. In this experiment, the total fat mass weighed less (- 68%) in the dimerizer-treated mice than in the controls, yet neither bone mass nor biomechanical properties differed between groups. Our findings show that adipose tissue loss, despite the reduced mechanical loading, does not affect bone in age-related obese mice. Future studies are needed to test whether adipose tissue loss is beneficial during more severe obesity.
Asunto(s)
Adiposidad , Huesos/patología , Adipocitos/patología , Animales , Apoptosis , Biomarcadores/sangre , Fenómenos Biomecánicos , Células de la Médula Ósea/patología , Remodelación Ósea , Recuento de Linfocitos , Ratones Transgénicos , Tamaño de los Órganos , Bazo/patologíaRESUMEN
Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on nonvertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1-expressing osteocytes and late osteoblasts (Dmp1-creNotumflox/flox mice). We observed that the Dmp1-creNotumflox/flox mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur but no change in trabecular bone volume fraction in femur or in the lumbar vertebrae L5 in Dmp1-creNotumflox/flox mice as compared with control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce nonvertebral fracture risk.NEW & NOTEWORTHY NOTUM produced by osteoblasts is known to regulate cortical bone mass. Our new findings show that NOTUM specifically derived by DMP1-expressing osteocytes and late osteoblasts regulates cortical bone mass and not trabecular bone mass.
Asunto(s)
Densidad Ósea/genética , Esterasas/fisiología , Osteoblastos/metabolismo , Osteocitos/metabolismo , Osteoporosis/genética , Animales , Remodelación Ósea/genética , Huesos/metabolismo , Huesos/patología , Hueso Cortical/fisiología , Esterasas/genética , Esterasas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/fisiología , Osteocitos/fisiología , Osteogénesis/genética , Osteoporosis/metabolismoRESUMEN
Studies in humans and rodents show that probiotic bacteria can protect from bone loss caused by sex steroid deficiency. We showed earlier that a mixture of three probiotic bacteria, Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312, and DSM 15313 (L. mix), protects mice from ovariectomy (ovx)-induced bone loss when treatment was started 2 wk before sham and ovx surgery. In addition, the same probiotic treatment protected against lumbar spine bone loss in early postmenopausal women. In the present study, we wanted to evaluate the therapeutic potential of L. mix by starting treatment 1.5 wk after ovx when most of the rapid bone loss as a result of estrogen deficiency has already occurred. Treatment with L. mix for 5.5 wk increased the trabecular thickness but not the trabecular number in the proximal metaphyseal region of tibia compared with vehicle treatment. Cortical thickness and cortical area of the middiaphyseal part of the tibia were significantly decreased in ovx mice but not in L. mix-treated ovx mice. The bone-protective effects of L. mix in ovx mice were associated with a protection against ovx-induced reduction of the frequency of regulatory T-cells and of the expression of Tgfß in the bone marrow. In conclusion, the probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy.NEW & NOTEWORTHY The probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy.