Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Plants (Basel) ; 10(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072675

RESUMEN

The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.

2.
BMC Plant Biol ; 20(1): 451, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004006

RESUMEN

BACKGROUND: The HD-Zip transcription factors are unique to plants and play an essential role in plant growth, development and stress responses. The HD-Zip transcription factor family consists of a highly conserved homeodomain (HD) and a leucine zipper domain (LZ) domain. Although the HD-Zip gene family has been extensively studied in many plant species, a systematic study of the Eucalyptus HD-Zip family has not been reported until today. Here, we systematically identified 40 HD-Zip genes in Eucalyptus (Eucalyptus grandis). Besides, we comprehensively analyzed the HD-Zips of Eucalyptus by studying the homology, conserved protein regions, gene structure, 3D structure of the protein, location of the genes on the chromosomes and the expression level of the genes in different tissues. RESULTS: The HD-Zip family in Eucalyptus has four subfamilies, which is consistent with other plants such as Arabidopsis and rice. Moreover, genes that are in the same group tend to have similar exon-intron structures, motifs, and protein structures. Under salt stress and temperature stress, the Eucalyptus HD-Zip transcription factors show a differential expression pattern. CONCLUSIONS: Our findings reveal the response of HD-Zip transcription factors under salt and temperature stresses, laying a foundation for future analysis of Eucalyptus HD-Zip transcription factors.


Asunto(s)
Eucalyptus/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Termotolerancia/genética , China , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA