Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Hum Genet ; 82(5): 244-253, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29663307

RESUMEN

Recent studies suggested that long noncoding RNAs (lncRNAs) were widely transcribed in the genome, but their potential roles in the genetic complexity of human disorders required further exploration. The purpose of the present study was to explore genetic polymorphisms of lncRNAs associated with bone mineral density (BMD) and its potential value. Based on the lncRNASNP database, 55,906 lncSNPs were selected to conduct a genome-wide association study meta-analysis among 11,140 individuals of seven independent studies for BMDs at femoral neck (FN), lumbar spine, and total hip (HIP). Promising results were replicated in Genetic Factors for Osteoporosis Consortium (GEFOS Sequencing, n = 32,965). We found two lncRNA loci that were significantly associated with BMD. MEF2C antisense RNA 1 (MEF2C-AS1) located at 5q14.3 was significantly associated with FN-BMD after Bonferroni correction, and the strongest association signal was detected at rs6894139 (P = 3.03 × 10-9 ). LOC100506136 rs6465531 located at 7q21.3 showed significant association with HIP-BMD (P = 7.43 × 10-7 ). MEF2C-AS1 rs6894139 was replicated in GEFOS Sequencing with P-value of 1.43 × 10-23 . Our results illustrated the important role of polymorphisms in lncRNAs in determining variations of BMD and provided justification and evidence for subsequent functional studies.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , ARN Largo no Codificante/genética , Bases de Datos Genéticas , Humanos , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple
2.
Mol Genet Genomics ; 293(3): 711-723, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29327327

RESUMEN

Dyslipidemia (DL) is closely related to osteoporosis (OP), while the exact common genetic mechanisms are still largely unknown. We proposed to use novel genetic analysis methods with pleiotropic information to identify potentially novel and/or common genes for the potential shared pathogenesis associated with OP and/or DL. We assessed the pleiotropy between plasma lipid (PL) and femoral neck bone mineral density (FNK BMD). We jointly applied the conditional false discovery rate (cFDR) method and the genetic analysis incorporating pleiotropy and annotation (GPA) method to the summary statistics provided by genome-wide association studies (GWASs) of FNK BMD (n = 49,988) and PL (n = 188,577) to identify potentially novel and/or common genes for BMD/PL. We found strong pleiotropic enrichment between PL and FNK BMD. Two hundred and forty-five PL SNPs were identified as potentially novel SNPs by cFDR and GPA. The corresponding genes were enriched in gene ontology (GO) terms "phospholipid homeostasis" and "chylomicron remnant clearance". Three SNPs (rs2178950, rs9939318, and rs9368716) might be the pleiotropic ones and the corresponding genes NLRC5 (rs2178950) and TRPS1 (rs9939318) were involved in NF-κB signaling pathway and Wnt signaling pathway as well as inflammation and innate immune processes. Our study validated the pleiotropy between PL and FNK BMD, and corroborated the reliability and high-efficiency of cFDR and GPA methods in further analyses of existing GWASs with summary statistics. We identified potentially common and/or novel genes for PL and/or FNK BMD, which may provide new insight and direction for further research.


Asunto(s)
Dislipidemias/genética , Redes Reguladoras de Genes , Lípidos/sangre , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Densidad Ósea , Proteínas de Unión al ADN/genética , Dislipidemias/sangre , Cuello Femoral/fisiología , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Osteoporosis/sangre , Proteínas Represoras , Transducción de Señal , Factores de Transcripción/genética
3.
Sci Rep ; 7(1): 16397, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180724

RESUMEN

Genome-wide association studies (GWASs) have been performed extensively in diverse populations to identify single nucleotide polymorphisms (SNPs) associated with complex diseases or traits. However, to date, the SNPs identified fail to explain a large proportion of the variance of the traits/diseases. GWASs on type 2 diabetes (T2D) and obesity are generally focused on individual traits independently, and genetic intercommunity (common genetic contributions or the product of over correlated phenotypic world) between them are largely unknown, despite extensive data showing that these two phenotypes share both genetic and environmental risk factors. Here, we applied a recently developed genetic pleiotropic conditional false discovery rate (cFDR) approach to discover novel loci associated with BMI and T2D by incorporating the summary statistics from existing GWASs of these two traits. Conditional Q-Q and fold enrichment plots were used to visually demonstrate the strength of pleiotropic enrichment. Adopting a cFDR nominal significance level of 0.05, 287 loci were identified for BMI and 75 loci for T2D, 23 of which for both traits. By incorporating related traits into a conditional analysis framework, we observed significant pleiotropic enrichment between obesity and T2D. These findings may provide novel insights into the etiology of obesity and T2D, individually and jointly.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Variación Genética , Obesidad/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
4.
J Neurol Sci ; 380: 262-272, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870582

RESUMEN

BACKGROUND: Both type 2 diabetes (T2D) and Alzheimer's disease (AD) occur commonly in the aging populations and T2D has been considered as an important risk factor for AD. The heritability of both diseases is estimated to be over 50%. However, common pleiotropic single-nucleotide polymorphisms (SNPs)/loci have not been well-defined. The aim of this study is to analyze two large public accessible GWAS datasets to identify novel common genetic loci for T2D and/or AD. METHODS AND MATERIALS: The recently developed novel conditional false discovery rate (cFDR) approach was used to analyze the summary GWAS datasets from International Genomics of Alzheimer's Project (IGAP) and Diabetes Genetics Replication And Meta-analysis (DIAGRAM) to identify novel susceptibility genes for AD and T2D. RESULTS: We identified 78 SNPs (including 58 novel SNPs) that were associated with AD in Europeans conditional on T2D (cFDR<0.05). 66 T2D SNPs (including 40 novel SNPs) were identified by conditioning on SNPs association with AD (cFDR<0.05). A conjunction-cFDR (ccFDR) analysis detected 8 pleiotropic SNPs with a significance threshold of ccFDR<0.05 for both AD and T2D, of which 5 SNPs (rs6982393, rs4734295, rs7812465, rs10510109, rs2421016) were novel findings. Furthermore, among the 8 SNPs annotated at 6 different genes, 3 corresponding genes TP53INP1, TOMM40 and C8orf38 were related to mitochondrial dysfunction, critically involved in oxidative stress, which potentially contribute to the etiology of both AD and T2D. CONCLUSION: Our study provided evidence for shared genetic loci between T2D and AD in European subjects by using cFDR and ccFDR analyses. These results may provide novel insight into the etiology and potential therapeutic targets of T2D and/or AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Proteínas Portadoras/genética , Citocinas/genética , Europa (Continente) , Femenino , Genómica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética
5.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28012008

RESUMEN

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Densidad Ósea/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Adulto , Femenino , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
6.
J Clin Endocrinol Metab ; 100(11): E1457-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26312577

RESUMEN

OBJECTIVE: Age at menarche (AAM) is determined by the overall duration of endocrine-tissue sex hormone exposure levels. Osteoporosis, the most common metabolic bone disease, is characterized primarily by reduced bone mineral density (BMD) and an increased risk of low trauma fractures. Bone was an endocrine organ regulating the synthesis and secretion of sex steroid hormones. The mutual dependence between bone and gonads underscore the importance of genetic approaches to identify novel pleiotropic genetic factors coregulating BMD and AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to explore novel ethnic common loci and/or genes that may influence both AAM and BMD. METHODS: We analyzed genotyping data available for 826 unrelated Chinese subjects using genome-wide human genotyping arrays. After quality control, a total of 702 413 single-nucleotide polymorphisms (SNPs) were tested for association using a bivariate linear regression model. The interesting SNPs were replicated in three independent cohorts including 1728 unrelated Caucasians, 709 African-Americans, and 408 Hispanic-Americans. RESULTS: We found four SNPs (rs10817638, rs7851259, rs10982287, and rs4979427), located upstream of the ATP6V1G1 gene, were bivariately associated with hip BMD-AAM (P = 4.90 × 10(-7), P = 1.07 × 10(-6), P = 1.28 × 10(-5), and P = 5.42 × 10(-5), respectively). These four SNPs were replicated in African-Americans, with corresponding values of P = 1.95 × 10(-2), P = 3.18 × 10(-2), P = 2.57 × 10(-2), and P = 3.64 × 10(-2), respectively. rs10817638 and rs10982287 were further replicated in Caucasians (P = 1.76 × 10(-2) and P = 9.42 × 10(-3), respectively) and Hispanic-Americans (P = 8.37 × 10(-3) and P = 1.52 × 10(-3), respectively). Meta-analyses yielded stronger association signals for rs10817638 and rs10982287 with combined values of P = 3.02 × 10(-9) and P = 3.49 × 10(-9), respectively. CONCLUSIONS: Our study implicated ATP6V1G1 as a novel pleiotropic gene underlying variation of both BMD and AAM. The findings enhance our knowledge of genetic associations between BMD and AAM and provide a rationale for subsequent functional studies of these implicated genes in the pathophysiology of diseases/traits, such as osteoporosis and AAM.


Asunto(s)
Regiones no Traducidas 5' , Desarrollo del Adolescente , Predisposición Genética a la Enfermedad , Menarquia/genética , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Adulto , Anciano , Pueblo Asiatico , Densidad Ósea , China , Femenino , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Menarquia/metabolismo , Persona de Mediana Edad , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Estados Unidos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adulto Joven
7.
PLoS One ; 9(5): e96149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24879436

RESUMEN

Obesity is a major public health problem with a significant genetic component. Multiple DNA polymorphisms/genes have been shown to be strongly associated with obesity, typically in populations of European descent. The aim of this study was to verify the extent to which 6 confirmed obesity genes (FTO, CTNNBL1, ADRB2, LEPR, PPARG and UCP2 genes) could be replicated in 8 different samples (n = 11,161) and to explore whether the same genes contribute to obesity-susceptibility in populations of different ancestries (five Caucasian, one Chinese, one African-American and one Hispanic population). GWAS-based data sets with 1000 G imputed variants were tested for association with obesity phenotypes individually in each population, and subsequently combined in a meta-analysis. Multiple variants at the FTO locus showed significant associations with BMI, fat mass (FM) and percentage of body fat (PBF) in meta-analysis. The strongest association was detected at rs7185735 (P-value = 1.01×10(-7) for BMI, 1.80×10(-6) for FM, and 5.29×10(-4) for PBF). Variants at the CTNNBL1, LEPR and PPARG loci demonstrated nominal association with obesity phenotypes (meta-analysis P-values ranging from 1.15×10(-3) to 4.94×10(-2)). There was no evidence of association with variants at ADRB2 and UCP2 genes. When stratified by sex and ethnicity, FTO variants showed sex-specific and ethnic-specific effects on obesity traits. Thus, it is likely that FTO has an important role in the sex- and ethnic-specific risk of obesity. Our data confirmed the role of FTO, CTNNBL1, LEPR and PPARG in obesity predisposition. These findings enhanced our knowledge of genetic associations between these genes and obesity-related phenotypes, and provided further justification for pursuing functional studies of these genes in the pathophysiology of obesity. Sex and ethnic differences in genetic susceptibility across populations of diverse ancestries may contribute to a more targeted prevention and customized treatment of obesity.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Obesidad/genética , Grupos Raciales/genética , Humanos , Fenotipo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA