Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 860
Filtrar
1.
Adv Sci (Weinh) ; : e2404937, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962935

RESUMEN

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.

2.
Int J Biol Macromol ; 275(Pt 2): 133593, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971284

RESUMEN

Integrins are heterodimers composed of two subunits, α(120-185kD) and ß (90-110kD), which mediate the connection between cells and their external environment, such as extracellular matrix (ECM), and play an important role in the regulation of cell shape, proliferation and migration. Herein, we identified a potent anti-tumor migration peptide Accutin from crude venom of Agkistrodon acutus using an A549 3D tumor sphere model, and simulation tools and RNA sequencing were performed to reveal the mechanism of Accutin. Accutin is a disintegrin and docking, molecular dynamics simulations and ITC assay indicate that the RGD motif in the Accutin sequence can stably bind to integrins α5ß1. 9.22 nM Accutin can significantly inhibit the migration and invasion of lung cancer cell lines. Transcriptome analysis indicated that many genes are involved in tumor cell adhesion-related biological processes. Several pathways, like the "mTOR signaling pathway", "TGF-ß signaling pathway", and "Focal adhesion" were enriched. Interestingly, pathways involved in "N-Glycan biosynthesis" etc. were significantly inhibited. These transcriptomics data suggested that the molecular basis of Accutin-mediated inhibition of cancer cell migration may be by inhibiting N-glycosylation of integrin, then inhibiting signaling pathways such as PI3K/AKT/mTOR and TGFß/smad. Western blotting analysis further confirmed that Accutin could suppress migration via down-regulating the phosphorylation of FAK and AKT and inhibiting EMT (epithelial-mesenchymal transition). Taken together, as a disintegrin with high efficiency, Accutin may be a potential precursor of a therapeutic agent for the treatment of lung cancer migration.

3.
Int J Biol Macromol ; 275(Pt 2): 133493, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960230

RESUMEN

Cotton has attracted considerable attention due to its functional characteristics. The focus of research on cotton has shifted in recent years towards designing multi-functional and modified media for cotton fibers, which can be firmly combined with textiles, giving them reusability and extending their service life. This study constructed a synergistic antibacterial layer of quaternary ammonium compounds (QACs) and N-halamine (Hals) using an in-situ free radical copolymerization method in water, named QACs/Hals@cotton-Cl. The route significantly increases the number of antibacterial active centers. FTIR, XPS, and SEM were used to systematically analyze the product's chemical structure, surface morphology, and other characteristics. The modified fabric's antibacterial efficiency, wound healing, renewability, and durability were also evaluated. The chlorinated modified cotton fabric could completely eradicate S. aureus and E. coli within 10 min. Compared with pure cotton, it notably promoted the healing rate of infected wounds in mice. The modification method imparted excellent hydrophobicity to the cotton fabric, with a contact angle exceeding 130°, making it easy to remove surface stains. After 30 days of regular storage and 24 h of UV irradiation, the active chlorine concentration (Cl+%) only decreased by 25 % and 39 %, respectively, and the reduced Cl+% was effectively recharged via simple re-chlorination. The hydrophobicity and antimicrobial properties of QACs/Hals@cotton-Cl remained stable even after 20 cycles of friction. This simple synthesis technique provides a convenient approach for the scalable fabrication of multifunctional and rechargeable antibacterial textiles, with potential applications in medical devices and personal hygiene protection.

4.
J Formos Med Assoc ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019707

RESUMEN

OBJECTIVES: This study aimed to identify clinical characteristics to differentiate multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) in Taiwan, an island with a delayed cluster of MIS-C and a high incidence of KD. Additionally, we studied risk factors for developing severe complications in patients with MIS-C. METHODS: We conducted a retrospective, multicenter, cohort, and observational study that linked data on patients with MIS-C between May and December 2022 and patients with KD between 2019 and 2021 from 12 medical centers. Hemodynamic compromise, defined as the need for inotropic support or fluid challenge, was recorded in patients with MIS-C. We also evaluated maximal coronary Z-scores before treatment and one month after disease onset. RESULTS: A total of 83 patients with MIS-C and 466 patients with KD were recruited. A 1:1 age and gender-matched comparison of 68 MIS-C and KD pairs showed that MIS-C patients had a lower percentage of positive BCG red halos, lower leukocyte/platelet counts, more gastrointestinal symptoms, and a higher risk of hemodynamic compromise. In Taiwan, 38.6% of MIS-C patients experienced hemodynamic compromise, with presence of conjunctivitis and elevated levels of procalcitonin (>1.62 ng/mL) identified as independent risk factors. CONCLUSIONS: We identified two independent risk factors associated with hemodynamic compromise in MIS-C patients. The comparison between matched MIS-C and KD patients highlighted significant differences in clinical presentations, like BCG red halos, which may aid in the differential diagnosis of the two disease entities, especially in regions with a high incidence rate of KD.

5.
J Orthop Surg Res ; 19(1): 417, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030552

RESUMEN

STUDY DESIGN: A systematic review and Bayesian network meta-analysis (NMA). OBJECTIVE: To compare the effectiveness and safety of different posterior decompression techniques for LSS. Lumbar spinal stenosis (LSS) is one of the most common degenerative spinal diseases that result in claudication, back and leg pain, and disability. Currently, posterior decompression techniques are widely used as an effective treatment for LSS. METHODS: An electronic literature search was performed using the EMBASE, Web of Science, PubMed, and Cochrane Library databases. Two authors independently performed data extraction and quality assessment. A Bayesian random effects model was constructed to incorporate the estimates of direct and indirect treatment comparisons and rank the interventions in order. RESULTS: In all, 14 eligible studies comprising 1,260 patients with LSS were included. Five interventions were identified, namely, spinal processes osteotomy (SPO), conventional laminotomy/laminectomy (CL), unilateral laminotomy/laminectomy (UL), bilateral laminotomy/ laminectomy (BL), and spinous process-splitting laminotomy/laminectomy (SPSL). Among these, SPO was the most promising surgical option for decreasing back and leg pain and for lowering the Oswestry Disability Index (ODI). SSPL had the shortest operation time, while SPSL was associated with maximum blood loss. SPO and UL were superior to other posterior decompression techniques concerning lesser blood loss and shorter length of hospital stay, respectively. Patients who underwent BL had the lowest postoperative complication rates. CONCLUSION: Overall, SPO was found to be a good surgical choice for patients with LSS.


Asunto(s)
Teorema de Bayes , Descompresión Quirúrgica , Vértebras Lumbares , Metaanálisis en Red , Estenosis Espinal , Estenosis Espinal/cirugía , Humanos , Descompresión Quirúrgica/métodos , Vértebras Lumbares/cirugía , Resultado del Tratamiento , Laminectomía/métodos
6.
Transplantation ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946036

RESUMEN

BACKGROUND: Donation after circulatory death livers are more susceptible to ischemia/reperfusion injury (IRI) because of a longer period of warm ischemia. Growing evidence now suggests that ferroptosis plays a key regulatory role in the development of IRI, so targeting ferroptosis may be an effective strategy to alleviate IRI in liver transplantation (LT). METHODS: Using donation after circulatory death LT models in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) models in BRL-3A cells, we tested the effect of the Chinese medicine monomer wogonin on liver IRI and explored the specific mechanism. RESULTS: Wogonin attenuated liver IRI and increased the survival rate of rats by inhibiting lipid peroxidation and ferroptosis. Mechanistically, arachidonic acid 15-lipoxygenase-1 (ALOX15) and inducible nitric oxide synthase (iNOS) were identified as potential targets of baicalein through bioinformatics analysis combined with in vivo and in vitro experiments. This result was further confirmed by molecular docking and cellular thermal shift assays. Finally, we silenced ALOX15 and iNOS in the OGD/R cell model and found that silencing ALOX15 and iNOS could reproduce the regulatory effect of wogonin and abrogate the regulatory effect of wogonin. CONCLUSIONS: In brief, this study emphasizes that wogonin exerts a protective effect in liver IRI through the regulation of ALOX15- and iNOS-mediated ferroptosis. ALOX15 and iNOS are potential targets for intervention in IRI induced by LT, and wogonin is a drug candidate for LT patients.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39012745

RESUMEN

In the domain of histopathology analysis, existing representation learning methods for biomarkers prediction from whole slide images (WSI) face challenges due to the complexity of tissue subtypes and label noise problems. This paper proposed a novel partial-label contrastive representation learning approach to enhance the discrimination of histopathology image representations for fine-grained biomarkers prediction. We designed a partial-label contrastive clustering (PLCC) module for partial-label disambiguation and a dynamic clustering algorithm to sample the most representative features of each category to the clustering queue during the contrastive learning process. We conducted comprehensive experiments on three gene mutation prediction datasets, including USTC-EGFR, BRCA-HER2, and TCGA-EGFR. The results show that our method outperforms 9 existing methods in terms of Accuracy, AUC, and F1 Score. Specifically, our method achieved an AUC of 0.950 in EGFR mutation subtyping of TCGA-EGFR and an AUC of 0.853 in HER2 0/1+/2+/3+ grading of BRCA-HER2, which demonstrates its superiority in fine-grained biomarkers prediction from histopathology whole slide images. The source code is available at https://github.com/WkEEn/PLCC.

8.
J Cancer ; 15(13): 4301-4312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947376

RESUMEN

Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.

9.
MedComm (2020) ; 5(8): e642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036342

RESUMEN

The poor prognosis observed in elderly individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a serious clinical burden and the underlying mechanism is unclear, which necessities detailed investigation of disease characteristics and research for efficient countermeasures. To simulate lethal coronavirus disease 2019 (COVID-19) in senescent human patients, 80-week-old male hamsters are intranasally inoculated with different doses of SARS-CoV-2 Omicron BA.5 variant. Exposure to a low dose of the Omicron BA.5 variant results in early activation of the innate immune response, followed by rapid viral clearance and minimal lung damage. However, a high dose of BA.5 results in impaired interferon signaling, cytokine storm, uncontrolled viral replication, and severe lung injury. To decrease viral load and reverse the deterioration of COVID-19, a new bio-mimic decoy called CoVR-MV is used as a preventive or therapeutic agent. Administration of CoVR-MV as a preventive or therapeutic intervention in the early stages of infection can effectively suppress viral load, regulate the immune response, and rescue animals from death and critical illness. These findings underscore the risk associated with SARS-CoV-2 Omicron BA.5 exposure in senescent hamsters and highlight the importance of early intervention to prevent disease progression.

10.
Games Health J ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934148

RESUMEN

Objective: Although some serious games have been developed for physical therapy, little work has been conducted through a participatory design approach. Therefore, a game prototype was developed, which involved related stakeholders in the design process. Materials and Methods: The iterative participatory design process was adopted with the input of 18 patients with frozen shoulder symptoms, 4 health professionals, 2 game designers, and 5 researchers in an iterative process to design, test, and evaluate the game prototype. In total, 17 patients participated in the interviews to explore their needs and desires for a serious game. The health professionals participated in the interviews to understand the medical requirement and experience pertaining to frozen shoulder and were included in the workshop to give feedback on the game prototype. At the conclusion of the iterative design process, a Kinect-based prototype game with three levels was used for a case study with one patient who was diagnosed with frozen shoulder and has been receiving medical treatment in the hospital. Results: Based on the outcomes derived from data collected among diverse stakeholders, the prototype game underwent iterative development by the team and was assessed by a participant with frozen shoulder symptoms. Findings revealed that the participant demonstrated enhanced shoulder mobility and a reduction in pain intensity, despite the lack of significant improvement for health-related quality of life. Nevertheless, the participant reported a positive experience with the prototype game. Conclusion: This study underscores the importance of involving diverse stakeholders in the development process to create more effective and user-centric serious games for rehabilitation. The participatory approach, exemplified by the prototype game, demonstrates potential improvements in both user experience and overall effectiveness during the rehabilitation process.

11.
Sci Total Environ ; 944: 173961, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876338

RESUMEN

The sulfur (S) cycle is an important biogeochemical cycle with profound implications for both cellular- and ecosystem-level processes by diverse microorganisms. Mangrove sediments are a hotspot of biogeochemical cycling, especially for the S cycle with high concentrations of S compounds. Previous studies have mainly focused on some specific inorganic S cycling processes without paying specific attention to the overall S-cycling communities and processes as well as organic S metabolism. In this study, we comprehensively analyzed the distribution, ecological network and assembly mechanisms of S cycling microbial communities and their changes with sediment depths using metagenome sequencing data. The results showed that the abundance of gene families involved in sulfur oxidation, assimilatory sulfate reduction, and dimethylsulfoniopropionate (DMSP) cleavage and demethylation decreased with sediment depths, while those involved in S reduction and dimethyl sulfide (DMS) transformation showed an opposite trend. Specifically, glpE, responsible for converting S2O32- to SO32-, showed the highest abundance in the surface sediment and decreased with sediment depths; in contrast, high abundances of dmsA, responsible for converting dimethyl sulfoxide (DMSO) to DMS, were identified and increased with sediment depths. We identified Pseudomonas and Streptomyces as the main S-cycling microorganisms, while Thermococcus could play an import role in microbial network connections in the S-cycling microbial community. Our statistical analysis showed that both taxonomical and functional compositions were generally shaped by stochastic processes, while the functional composition of organic S metabolism showed a transition from stochastic to deterministic processes. This study provides a novel perspective of diversity distribution of S-cycling functions and taxa as well as their potential assembly mechanisms, which has important implications for maintaining mangrove ecosystem functions.


Asunto(s)
Sedimentos Geológicos , Microbiota , Azufre , Humedales , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Azufre/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética
12.
Appl Environ Microbiol ; : e0054524, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899887

RESUMEN

White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.

13.
Neurologist ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853767

RESUMEN

OBJECTIVE: The ability of serum inflammatory factors and free triiodothyronine (FT3) in predicting the occurrence of stroke-associated pneumonia (SAP) in patients with acute ischemic stroke (AIS) was assessed in this study. METHODS: A retrospective analysis was conducted on 285 consecutive patients with AIS initially diagnosed and admitted to our hospital from January to December 2022. Patients were categorized into SAP and non-SAP groups based on the presence of SAP. Both groups were compared in terms of baseline characteristics, including National Institute of Health Stroke Scale (NIHSS) score, SAP risk assessment (A2DS2), TOAST classification. Independent risk factors for SAP were identified using multivariate logistic regression analysis, and the predictive value of inflammatory markers was evaluated through ROC curves. RESULTS: Among 285 patients with AIS, 40 (14.03%) were found to have developed SAP. Higher NIHSS and A2DS2 scores, elevated serum IL-1ß, IL-8, and IL-33 levels, increased age, atrial fibrillation, swallowing difficulties, and a higher proportion of patients with low FT3 levels were observed in the SAP group compared with the non-SAP group (all P<0.05). Significant risk factors for SAP in patients with AIS were identified through multivariate logistic regression analysis, including age, swallowing difficulties, NIHSS, A2DS2 , IL-1ß , IL-8 , IL-33, and FT3 (P<0.05). The highest predictive values were observed for A2DS2, FT3, and IL-8 with AUC values of 0.854, 0.844, and 0.823, respectively. CONCLUSION: SAP can be highly predicted by A2DS2, FT3, and IL-8, enabling the early identification of patients with high-risk SAP and facilitating timely intervention and treatment.

14.
Antioxidants (Basel) ; 13(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929141

RESUMEN

Repetitive motion or exercise is associated with oxidative stress and muscle inflammation, which can lead to declining grip strength and muscle damage. Oleanolic acid and ursolic acid have anti-inflammatory and antioxidant properties and can be extracted from Chaenomeles speciosa through ultrasonic sonication. We investigated the association between grip strength declines and muscle damage induced by lambda carrageenan (LC) injection and exercise exposure in rats. We also assessed the reparative effects of transdermal pretreatment and post-treatment with C. speciosa extracts (CSEs) by using a supersonic atomizer. The half-maximal inhibitory concentration (IC50) of CSEs for cells was 10.5 mg/mL. CSEs significantly reduced the generation of reactive oxygen species and inflammatory factors (interleukin [IL]-6 and IL-1ß) in in vitro cell tests. Rats subjected to LC injection and 6 weeks of exercise exhibited significantly increased inflammatory cytokine levels (IL-1ß, TNF-α, and IL-6). Hematoxylin and eosin staining revealed inflammatory cell infiltration and evident muscle damage in the gastrocnemius muscle, which exhibited splitting and the appearance of the endomysium and perimysium. The treated rats' grip strength significantly declined. Following treatment with CSEs, the damaged muscles exhibited decreased IL-1ß, TNF-α, and IL-6 levels and normal morphologies. Moreover, grip strength significantly recovered. Pretreatment with CSEs yielded an immediate and significant increase in grip strength, with an increase of 180% and 165% occurring in the rats exposed to LC injection and exercise within the initial 12 h period, respectively, compared with the control group. Pretreatment with CSEs delivered transdermally using a supersonic atomizer may have applications in sports medicine and training or competitions.

15.
Sci Rep ; 14(1): 14691, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926509

RESUMEN

Pepper agronomic traits serve as pivotal indicators for characterizing germplasm attributes and correlations. It is important to study differential genotypic variation through phenotypic differences of target traits. Whole genome resequencing was used to sequence the whole genome among different individuals of species with known reference genomes and annotations, and based on this, differential analyses of individuals or populations were carried out to identify SNPs for agronomic traits related to pepper. This study conducted a genome-wide association study encompassing 26 key agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. The population structure (phylogenetics, population structure, population principal component analysis, genetic relationship) and linkage disequilibrium analysis were realized to ensure the accuracy and reliability of GWAS results, and the optimal statistical model was determined. A total of 929 SNPs significantly associated with 26 agronomic traits, were identified, alongside the detection of 519 candidate genes within 100 kb region adjacent to these SNPs. Additionally, through gene annotation and expression pattern scrutiny, genes such as GAUT1, COP10, and DDB1 correlated with fruit traits in Capsicum frutescens and Capsicum annuum were validated via qRT-PCR. In the CH20 (Capsicum annuum) and YB-4 (Capsicum frutescens) cultivars, GAUT1 and COP10 were cloned with cDNA lengths of 1065 bp and 561 bp, respectively, exhibiting only a small number of single nucleotide variations and nucleotide deletions. This validation provides a robust reference for molecular marker-assisted breeding of pepper agronomic traits, offering both genetic resources and theoretical foundations for future endeavors in molecular marker-assisted breeding for pepper.


Asunto(s)
Capsicum , Frutas , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Capsicum/genética , Capsicum/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Fenotipo , Sitios de Carácter Cuantitativo , Filogenia , Genoma de Planta
16.
Lab Invest ; 104(8): 102094, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871058

RESUMEN

Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In this study, an artificial intelligence-powered deep learning framework was developed for the weakly supervised prediction of EGFR mutations in non-small cell lung cancer from hematoxylin and eosin-stained histopathology whole-slide images. The study cohort was partitioned into training and validation subsets. Foreground regions containing tumor tissue were extracted from whole-slide images. A convolutional neural network employing a contrastive learning paradigm was implemented to extract patch-level morphologic features. These features were aggregated using a vision transformer-based model to predict EGFR mutation status and classify patient cases. The established prediction model was validated on unseen data sets. In internal validation with a cohort from the University of Science and Technology of China (n = 172), the model achieved patient-level areas under the receiver-operating characteristic curve (AUCs) of 0.927 and 0.907, sensitivities of 81.6% and 83.3%, and specificities of 93.0% and 92.3%, for surgical resection and biopsy specimens, respectively, in EGFR mutation subtype prediction. External validation with cohorts from the Second Affiliated Hospital of Anhui Medical University and the First Affiliated Hospital of Wannan Medical College (n = 193) yielded patient-level AUCs of 0.849 and 0.867, sensitivities of 79.2% and 80.7%, and specificities of 91.7% and 90.7% for surgical and biopsy specimens, respectively. Further validation with the Cancer Genome Atlas data set (n = 81) showed an AUC of 0.861, a sensitivity of 84.6%, and a specificity of 90.5%. Deep learning solutions demonstrate potential advantages for automated, noninvasive, fast, cost-effective, and accurate inference of EGFR alterations from histomorphology. Integration of such artificial intelligence frameworks into routine digital pathology workflows could augment existing molecular testing pipelines.

17.
Virology ; 597: 110149, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917689

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions. Cellular experiments revealed that peptide S4 effectively inhibited SARS-CoV-2 and HCoV-NL63 viruses from infecting host cells and was safe for cells at effective concentrations. Based on these findings, peptide S4 may be a potential pharmaceutical agent for clinical application in the treatment of the ongoing SARS-CoV-2 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Internalización del Virus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Péptidos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Unión Proteica , COVID-19/virología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Chlorocebus aethiops , Animales
18.
Zool Res ; 45(4): 767-780, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38894520

RESUMEN

The mutation rate is a pivotal biological characteristic, intricately governed by natural selection and historically garnering considerable attention. Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain, ushering in an unprecedented era of mutation rate research. This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates. It examines various types of mutations, explores the evolutionary dynamics and associated theories, and synthesizes both classical and contemporary hypotheses. Furthermore, this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies, mutational patterns, molecular mechanisms, and driving forces influencing variations in mutation rates across species and tissues. Finally, it proposes several potential research directions and pressing questions for future investigations.


Asunto(s)
Tasa de Mutación , Animales , Mutación , Selección Genética , Evolución Biológica
19.
Neurotherapeutics ; : e00380, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38839450

RESUMEN

Calcium influx and subsequent elevation of the intracellular calcium concentration ([Ca2+]i) induce contractions of brain pericytes and capillary spasms following subarachnoid hemorrhage. This calcium influx is exerted through cation channels. However, the specific calcium influx pathways in brain pericytes after subarachnoid hemorrhage remain unknown. Transient receptor potential canonical 3 (TRPC3) is the most abundant cation channel potentially involved in calcium influx into brain pericytes and is involved in calcium influx into other cell types either via store-operated calcium entry (SOCE) or receptor-operated calcium entry (ROCE). Therefore, we hypothesized that TRPC3 is associated with [Ca2+]i elevation in brain pericytes, potentially mediating brain pericyte contraction and capillary spasms after subarachnoid hemorrhage. In this study, we isolated rat brain pericytes and demonstrated increased TRPC3 expression and its currents in brain pericytes after subarachnoid hemorrhage. Calcium imaging of brain pericytes revealed that changes in TRPC3 expression mediated a switch from SOCE-dominant to ROCE-dominant calcium influx after subarachnoid hemorrhage, resulting in significantly higher [Ca2+]i levels after SAH. TRPC3 activity in brain pericytes also contributed to capillary spasms and reduction in cerebral blood flow in an in vivo rat model of subarachnoid hemorrhage. Therefore, we suggest that the switch in TRPC3-mediated calcium influx pathways plays a crucial role in the [Ca2+]i elevation in brain pericytes after subarachnoid hemorrhage, ultimately leading to capillary spasms and a reduction in cerebral blood flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA