Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Colloid Interface Sci ; 668: 448-458, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691955

RESUMEN

People have been focusing on how to improve the specific capacity and cycling stability of lithium-sulfur batteries at room temperature, however, on some special occasions such as cold cities and aerospace fields, the operating temperature is low, which dramatically hinders the performance of batteries. Here, we report an iron carbide (Fe3C)/rGO composite as electrode host, the Fe3C nanoparticles in the composite have strong adsorption and high catalytic ability for polysulfide. The rGO makes the distribution of Fe3C nanoparticles more disperse, and this specific structure makes the deposition of Li2S more uniform. Therefore, it realizes the rapid transformation and high performance of lithium-sulfur batteries at both room and low temperatures. At room temperature, after 100 cycles at 1C current density, the reversible specific capacity of the battery can be stabilized at 889 ± 7.1 mAh/g. Even at -40 °C, in the first cycle battery still emits 542.9 ± 3.7 mAh/g specific capacity. This broadens the operating temperature for lithium-sulfur batteries and also provides a new idea for the selection of host materials for sulfur in low-temperature lithium-sulfur batteries.

2.
Molecules ; 28(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959733

RESUMEN

Sodium-ion batteries (SIBs) are promising alternatives to replace lithium-ion batteries as future energy storage batteries because of their abundant sodium resources, low cost, and high charging efficiency. In order to match the high energy capacity and density, designing an atomically doped carbonous material as the anode is presently one of the important strategies to commercialize SIBs. In this work, we report the preparation of high-performance dual-atom-doped carbon (C) materials using low-cost corn starch and thiourea (CH4N2S) as the precursors. The electronegativity and radii of the doped atoms and C are different, which can vary the embedding properties of sodium ions (Na+) into/on C. As sulfur (S) can effectively expand the layer spacing, it provides more channels for embedding and de-embedding Na+. The synergistic effect of N and S co-doping can remarkably boost the performance of SIBs. The capacity is preserved at 400 mAh g -1 after 200 cycles at 500 mA g-1; more notably, the initial Coulombic efficiency is 81%. Even at a high rate of high current of 10 A g-1, the cell capacity can still reach 170 mAh g-1. More importantly, after 3000 cycles at 1 A g-1, the capacity decay is less than 0.003% per cycle, which demonstrates its excellent electrochemical performance. These results indicate that high-performance carbon materials can be prepared using low-cost corn starch and thiourea.

3.
J Colloid Interface Sci ; 650(Pt A): 913-923, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453315

RESUMEN

The paper presents a self-assembly approach to synthesize Ni3S2/N, P co-doped graphene (PNG) composite electrode materials for supercapacitors with high energy storage performance and structural stability. Innovatively, the self-assembly approach is induced via the surface charge effect utilizing a two-step hydrothermal method. The doping of nitrogen (N) and phosphorus (P) atoms regulates the surface charge distribution on graphene nanosheets. Therefore, in the synthesized Ni3S2/PNG heterostructures, Ni3S2 nanowires are interwoven into nests and uniformly attached to PNG. The design of the electrode materials with such a special structure not only supports each other to improve the stability of the materials but also facilitates the rapid diffusion of electrolyte ions. Based on the advantages of composition and structure, Ni3S2/PNG has a high specific capacitance of 1117C g-1 at a current density of 1 A/g and excellent rate performance. The asymmetric supercapacitors (ASC) assembled with Ni3S2/PNG and PNG as positive and negative materials respectively have a high energy density of 62 Wh kg-1 at a power density of 158 W kg-1.

4.
Materials (Basel) ; 15(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363119

RESUMEN

Considering the safety problem that is caused by liquid electrolytes and Li dendrites for lithium batteries, a new quasi-solid-state polymer electrolyte technology is presented in this work. A layer of 1,4-phenylene bridged polysilsesquioxane (PSiO) is synthesized by a sol-gel way and coated on the electrospun polyacrylonitrile (PAN) nanofiber to prepare a PAN@PSiO nanofiber composite membrane, which is then used as a quasi-solid-state electrolyte scaffold as well as separator for lithium batteries (LBs). This composite membrane, consisting of the three-dimensional network architecture of the PAN nanofiber matrix and a mesoporous PSiO coating layer, exhibited a high electrolyte intake level (297 wt%) and excellent mechanical properties. The electrochemical analysis results indicate that the ionic conductivity of the PAN@PSiO-based quasi-solid-state electrolyte membrane is 1.58 × 10-3 S cm-1 at room temperature and the electrochemical stability window reaches 4.8 V. The optimization of the electrode and the composite membrane interface leads the LiFePO4|PAN@PSiO|Li full cell to show superior cycling (capacity of 137.6 mAh g-1 at 0.2 C after 160 cycles) and excellent rate performances.

5.
ACS Appl Mater Interfaces ; 14(40): 45414-45422, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183261

RESUMEN

Owning to its various advantages, the lithium-sulfur battery is one of the research hot spots for new energy storage systems. Diverse hollow structures with specific morphologies have been used as the sulfur host materials to adsorb or/and catalyze the polysulfides, and can in particular concurrently inhibit the volume expansion during electrochemical processes in lithium-sulfur batteries. However, hollow space with a large volume will restrict the performance of the cell under high sulfur area loading, which is a very important indicator for the practical applications of the lithium-sulfur battery. Here, we report a nano thin cage cobalt acid zinc (ZnCo2O4) with limited hollow space as the cathode catalyst for lithium-sulfur batteries, which greatly reduces the electrode volume occupied by the hollow structure. The hollow volume of these thin cages is much smaller than those of the normally reported hollow materials in the literatue. The electrochemical performance of lithium-sulfur batteries with ZnCo2O4 thin cages could greatly improve due to the unique structure and the synergistic adsorption/catalytic effect of Zn/Co sites, especially at an ultrahigh S area load. Under a high S loading of 8 mg cm-2, the cell could keep a reversible capacity of 600 mAh g-1 after 500 cycles. Even at a sulfur loading of 10 mg cm-2, the cell still releases a discharge capacity of 1000 mAh g-1 which is equivalent of an area capacity of 10 mAh cm-2. This work provides a feasible way to develop lithium sulfur batteries with a high area sulfur load. This idea provides a possible solution to develop a Li-S battery at high area S loading and move one step closer to the practical applications.

6.
Mol Med ; 28(1): 2, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983361

RESUMEN

BACKGROUND: Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear. METHODS: shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells. Quantitative real-time PCR (qRT-PCR) was used to detect levels of HCG18, miR-29a/b, and mRNAs. MTT, colony formation, wound healing and Transwell assays were used to evaluate cell proliferation, migration and invasion, respectively. A luciferase reporter assay was utilized to evaluate NF-κB activity and the binding of miRNAs with HCG18 or TRAF4/5. BALB nude mice injected with cells stably expressing shHCG18 or shNC were used for in vivo modelling. Subcutaneous tumour growth was monitored in nude mice, and immunohistochemistry (IHC) was used to determine expression of the proliferation marker Ki67. RESULTS: Abnormal expression of HCG18 and miR-29a/b was observed in EOC tissues. Knockdown of HCG18 using shRNA inhibited proliferation, migration, EMT and the proinflammatory pathway in EOC cells. miR-29a/b mimics and TRAF4/5 knockdown exhibited effects similar to HCG18 knockdown. Further experiments suggested that HCG18 directly targets miR-29a/b and upregulates TRAF4/5 expression, which are inhibited by targeting miR-29a/b. Moreover, overexpression of TRAF4/5 antagonized the inhibitory effect of HCG18 knockdown, suggesting that they are involved in HCG18-mediated oncogenic effects. Silencing HCG18 reduced tumour size and levels of Ki67 and TRAF4/5 while increasing miR-29a/b levels in vivo. CONCLUSIONS: Taken together, our data revealed an oncogenic signalling pathway mediated by HCG18 in ovarian cell lines, which functions as a ceRNA of miR-29a/b and thus derepresses expression levels of TRAF4/5, facilitating NF-κB pathway-mediated promotion of EOC cell proliferation and migration.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase I/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Factor 4 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/genética , Regiones no Traducidas 3' , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Interferencia de ARN , Transducción de Señal
7.
Faraday Discuss ; 233(0): 190-205, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34889342

RESUMEN

Copper is the most widely used substrate for Li deposition and dissolution in lithium metal anodes, which is complicated by the formation of solid electrolyte interphases (SEIs), whose physical and chemical properties can affect Li deposition and dissolution significantly. However, initial Li nucleation and growth on bare Cu creates Li nuclei that only partially cover the Cu surface so that SEI formation could proceed not only on Li nuclei but also on the bare region of the Cu surface with different kinetics, which may affect the follow-up processes distinctively. In this paper, we employ in situ atomic force microscopy (AFM), together with X-ray photoelectron spectroscopy (XPS), to investigate how SEIs formed on a Cu surface, without Li participation, and on the surface of growing Li nuclei, with Li participation, affect the components and structures of the SEIs, and how the formation sequence of the two kinds of SEIs, along with Li deposition, affect subsequent dissolution and re-deposition processes in a pyrrolidinium-based ionic liquid electrolyte containing a small amount of water. Nanoscale in situ AFM observations show that sphere-like Li deposits may have differently conditioned SEI-shells, depending on whether Li nucleation is preceded by the formation of the SEI on Cu. Models of integrated-SEI shells and segmented-SEI shells are proposed to describe SEI shells formed on Li nuclei and SEI shells sequentially formed on Cu and then on Li nuclei, respectively. "Top-dissolution" is observed for both types of shelled Li deposits, but the integrated-SEI shells only show wrinkles, which can be recovered upon Li re-deposition, while the segmented-SEI shells are apparently top-opened due to mechanical stresses introduced at the junctions of the top regions and become "dead" SEIs, which forces subsequent Li nucleation and growth in the interstice of the dead SEIs. Our work provides insights into the impact mechanism of SEIs on the initial stage Li deposition and dissolution on foreign substrates, revealing that SEIs could be more influential on Li dissolution and that the spatial integration of SEI shells on Li deposits is important to improving the reversibility of deposition and dissolution cycling.

8.
RSC Adv ; 11(54): 33858-33866, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497275

RESUMEN

The replacement of flammable liquid electrolytes by inorganic solid ones is considered the most effective approach to enhancing the safety of Li batteries. However, solid electrolytes usually suffer from low ionic conductivity and poor rate capability. Here we report a unique quasi-solid-state electrolyte based on an inorganic matrix composed of helical tubular silica nanofibers (HSNFs) derived from the self-assembly of chiral low-molecular-weight amphiphiles. The HSNFs/ionic liquid quasi-solid-state electrolyte has high thermal stability (up to ∼370 °C) and good ionic conductivity (∼3.0 mS cm-1 at room temperature). When tested as the electrolyte in a LiFePO4/Li cell, excellent rate capability and good cycling stability are demonstrated, suggesting that it has potential be the electrolyte for a new generation of safer Li batteries.

9.
Zhen Ci Yan Jiu ; 45(6): 504-7, 2020 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-32643889

RESUMEN

A literature review was performed to investigate the possible mechanism of scalp acupuncture in stimulating the skin, fascia, muscle, and periosteum and thus affecting cerebral cortex function. The results of literature research show that the effect of scalp acupuncture on cerebral cortex function may be achieved by the stimulation of specific anatomical structures. Stimulation of the skin, fascia, muscle and periosteum can activate the functional areas of the cerebral cortex through the midbrain, thalamus, and brainstem. In addition, different depths of stimulation may affect the deep and shallow sensation of the brain, self-monitoring of the fascia, subcortical central compensation, and cortical discharge. Therefore, exploration of the specific rules and differences in the effect of stimulating different anatomical structures on brain function is the future focus of the clinical and basic research on scalp acupuncture.


Asunto(s)
Terapia por Acupuntura , Corteza Cerebral , Cuero Cabelludo
10.
Environ Res ; 184: 109323, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32145552

RESUMEN

Volatile organic compounds (VOCs) are perceived as serious pollutants due to their great threat to both environment and human health. Recovery and removal of VOCs is of great significance. Herein, novel MOF-199 derived porous carbon materials (MC-T-n) were prepared by using MOF-199 as precursor, glucose as additional carbon source and KOH as activator, and then characterized. Adsorption performance of MC-T-n materials for benzene vapor was investigated. Isotherms of MC-T-n samples towards benzene and water vapor were measured. The adsorption selectivities of benzene/water were estimated by DIH (difference of the isosteric heats) equation. Results indicated that BET surface area and pore volume of MC-T-n materials reached separately 2320 m2/g and 1.05 m3/g. Benzene adsorption capacity of MC-T-n materials reached as high as 12.8 mmol/g at 25 °C, outperforming MOF-199 and some conventional adsorbents. Moreover, MC-T-n materials presented type-V isotherms of water vapor, suggesting their excellent water resistance. The isosteric heats of benzene adsorption on MC-500-6 were much greater than that of water adsorption, leading to a preferential adsorption for C6H6 over H2O. The adsorption selectivity of C6H6/H2O on MC-500-6 reached up to 16.3 superior to some previously reported MOFs. Therefore, MC-500-6 was a promising candidate for VOC adsorption and seperation. This study provides a strong foundation for MOF derived porous carbons as adsorbents for VOC removal.


Asunto(s)
Contaminación del Aire , Benceno , Carbono , Adsorción , Contaminación del Aire/prevención & control , Benceno/química , Gases , Porosidad
11.
Front Chem ; 7: 652, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31612128

RESUMEN

New hierarchical Fe(III)-doped Cu-MOFs (Fe-HK) were developed via introduction of Fe3+ ions during HKUST-1 synthesis. The obtained products were characterized by N2 adsorption, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, and thermal analysis. The adsorption isotherms and kinetics of benzene vapor were measured and consecutive adsorption-desorption cycles were performed. It was found that the hierarchical-pore Fe-HK-2 exhibited optimal textural properties with high BET surface area of 1,707 m2/g and total pore volume of 0.93 cm3/g, which were higher than those of the unmodified HKUST-1. Significantly, the hierarchical-pore Fe-HK-2 possessed outstanding benzene adsorption capacity, which was 1.5 times greater than the value on HKUST-1. Benzene diffusivity of Fe-HK-2 was 1.7 times faster than that of parent HKUST-1. Furthermore, the benzene adsorption on Fe-HK-2 was highly reversible. The hierarchical-pore Fe-HK-2 with high porosity, outstanding adsorption capacity, enhanced diffusion rate, and excellent reversibility might be an attractive candidate for VOCs adsorption. This may offer a simple and effective strategy to synthesize hierarchical-pore MOFs by doping with other metal ions.

12.
Front Chem ; 6: 319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151361

RESUMEN

Density functional theory calculations have been performed to study the detailed mechanism of Ni-mediated [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes via cleavage of two C-F bonds. It was found that the reaction pathway involves oxidative cyclization, the first ß-fluorine elimination, and then intramolecular 5-endo insertion of difluoroalkene, followed by the second cleavage of C-F bond, and finally the dissociation of difluorides yields the fluorine-containing product cyclopentadienes in sequence. The overall rate-determining step is the combined processes of the ß-fluorine elimination and the 5-endo insertion. Furthermore, we investigated the effect of different ligands and the regioselectivity of asymmetric alkynes. The detailed energy profiles and structures are presented in this study.

13.
ACS Appl Mater Interfaces ; 10(30): 25473-25482, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989392

RESUMEN

Despite the extremely high ionic conductivity, the commercialization of Li10GeP2S12-type materials is hindered by the poor stability against Li metal. Herein, to address that issue, a simple strategy is proposed and demonstrated for the first time, i.e., in situ modification of the interface between Li metal and Li10SnP2S12 (LSPS) by pretreatment with specific ionic liquid and salts. X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy results reveal that a stable solid electrolyte interphase (SEI) layer instead of a mixed conducting layer is formed on Li metal by adding 1.5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/ N-propyl- N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13TFSI) ionic liquid, where ionic liquid not only acts as a wetting agent but also improves the stability at the Li/LSPS interface. This stable SEI layer can prevent LSPS from directly contacting the Li metal and further decomposition, and the Li/LSPS/Li symmetric cell with 1.5 M LiTFSI/Pyr13TFSI attains a stable cycle life of over 1000 h with both the charge and discharge voltages reaching about 50 mV at 0.038 mA cm-2. Furthermore, the effects of different Li salts on the interfacial modification is also compared and investigated. It is shown that lithium bis(fluorosulfonyl) imide (LiFSI) salt causes the enrichment of LiF in the SEI layer and results in a higher resistance of the cell upon a long cycling life.

14.
Chem Commun (Camb) ; 54(60): 8351-8354, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29993050

RESUMEN

A significant composition-dependent catalysis behavior was observed in catalytic acetone hydrogenation. Carbon supported PtRu alloy nanoparticles (NPs) with optimal surface composition achieved ultra-efficient and highly selective production of isopropyl alcohol.

15.
Front Chem ; 6: 166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868567

RESUMEN

The development of high energy lithium-ion batteries (LIBs) has spurred the designing and production of novel anode materials to substitute currently commercial using graphitic materials. Herein, twisted SiC nanofibers toward LIBs anode materials, containing 92.5 wt% cubic ß-SiC and 7.5 wt% amorphous C, were successfully synthesized from resin-silica composites. The electrochemical measurements showed that the SiC-based electrode delivered a stable reversible capacity of 254.5 mAh g-1 after 250 cycles at a current density of 0.1 A g-1. It is interesting that a high discharge capacity of 540.1 mAh g-1 was achieved after 500 cycles at an even higher current density of 0.3 A g-1, which is higher than the theoretical capacity of graphite. The results imply that SiC nanomaterials are potential anode candidate for LIBs with high stability due to their high structure stability as supported with the transmission electron microscopy images.

16.
Nat Commun ; 9(1): 1339, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29632301

RESUMEN

Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm-2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

17.
ChemSusChem ; 11(5): 881-887, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29446547

RESUMEN

Cu is a unique catalyst for CO2 electroreduction, since it can catalyze CO2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO2 is considered to facilitate the activity and selectivity of CO2 reduction. Herein, a new strategy is presented for CO2 reduction with improved C2 H4 selectivity on a Cu catalyst by using CO2 capture materials as the support at ambient pressure. N-doped carbon (Nx C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO2 uptake capacity of Nx C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/Nx C catalysts exhibit a considerably higher C2 H4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C2 H4 faradaic efficiency and CO2 uptake capacity of the supports for CuO. The local high CO2 concentration near Cu catalysts, created by CO2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C2 H4 . This study demonstrates that pairing Cu catalysts with CO2 capture supports is a promising approach for designing highly effective CO2 reduction electrocatalysts.


Asunto(s)
Dióxido de Carbono/química , Cobre/química , Técnicas Electroquímicas/métodos , Alcoholes/síntesis química , Ácidos Carboxílicos/síntesis química , Catálisis , Etilenos/química , Hidrocarburos/síntesis química , Oxidación-Reducción , Temperatura
18.
Nanotechnology ; 28(6): 065401, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28045009

RESUMEN

Nanostructured fluorine-doped α-Fe2O3 nanorods were synthesized based on a one-step low temperature hydrothermal method. The XPS results verified that fluorine has been successfully incorporated into the hematite lattice. The delivered lithium capacity was effectively improved owing to the fluorine doping comparing with the pristine α-Fe2O3. The increase in electrochemical capacity of fluorine-doped α-Fe2O3 was then studied from the pointviews of nanostructure, electronic properties, and magnetic characteristics.

19.
Nanotechnology ; 27(36): 365702, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479275

RESUMEN

Atomic-level substitutional doping can significantly tune the electronic properties of graphene. Using low-temperature scanning tunneling microscopy and spectroscopy, the atomic-scale crystalline structure of graphene grown on polycrystalline Cu, the distribution of nitrogen dopants and their effect on the electronic properties of graphene were investigated. Both the graphene sheet growth and nitrogen doping were performed using microwave plasma-enhanced chemical vapor deposition. The results indicated that the nitrogen dopants preferentially sit at the grain boundaries of the graphene sheets and confirmed that plasma treatment is a potential method to incorporate foreign atoms into the graphene lattice to tailor the graphene's electronic properties.

20.
Nanoscale ; 6(6): 3353-60, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24522297

RESUMEN

Toward the increasing demands of portable energy storage and electric vehicle applications, silicon has been emerging as a promising anode material for lithium-ion batteries (LIBs) owing to its high specific capacity. However, serious pulverization of bulk silicon during cycling limits its cycle life. Herein, we report a novel hierarchical Si nanowire (Si NW)-reduced graphene oxide (rGO) composite fabricated using a solvothermal method followed by a chemical vapor deposition process. In the composite, the uniform-sized [111]-oriented Si NWs are well dispersed on the rGO surface and in between rGO sheets. The flexible rGO enables us to maintain the structural integrity and to provide a continuous conductive network of the electrode, which results in over 100 cycles serving as an anode in half cells at a high lithium storage capacity of 2300 mA h g(-1). Due to its [111] growth direction and the large contact area with rGO, the Si NWs in the composite show substantially enhanced reaction kinetics compared with other Si NWs or Si particles.


Asunto(s)
Suministros de Energía Eléctrica , Grafito/química , Litio/química , Nanocables/química , Silicio/química , Técnicas Electroquímicas , Electrodos , Iones/química , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA