RESUMEN
Despite advancements in nanomedicine for drug delivery, many drug-loaded nanoparticles reduce tumor sizes but often fail to prevent metastasis. Mesoporous silica nanoparticles (MSNs) have attracted attention as promising nanocarriers. Here, we demonstrated that MSN-PEG/TA 25, with proper surface modifications, exhibited unique antimetastatic properties. In vivo studies showed that overall tumor metastasis decreased in 4T1 xenografts mice treated with MSN-PEG/TA 25 with a notable reduction in lung tumor metastasis. In vitro assays, including wound-healing, Boyden chamber, tube-formation, and real-time cell analyses, showed that MSN-PEG/TA 25 could modulate cell migration of 4T1 breast cancer cells and interrupt tube formation by human umbilical vein endothelial cells (HUVECs), key factors in suppressing cancer metastasis. The synergistic effect of MSN-PEG/TA 25 combined with liposomal-encapsulated doxorubicin (Lipo-Dox) significantly boosted mouse survival rates, outperforming Lipo-Dox monotherapy. We attributed the improved survival to the antimetastatic capabilities of MSN-PEG/TA 25. Moreover, Dox-loaded MSN-PEG/TA 25 suppressed primary tumors while retaining the antimetastatic effect, thereby enhancing therapeutic outcomes and overall survival. Western blot and qPCR analyses revealed that MSN-PEG/TA 25 interfered with the phosphorylation of ERK, FAK, and paxillin, thus impacting focal adhesion turnover and inhibiting cell motility. Our findings suggest that drug-free MSN-PEG/TA 25 is highly efficient for cancer treatment via suppressing metastatic activity and angiogenesis.
RESUMEN
Metabolic syndrome (MetS) is a significant public health problem and presents an escalating clinical challenge globally. To combat this problem effectively, urgent measures including identify some modifiable environmental factors are necessary. Outdoor artificial light at night (LAN) exposure garnered much attention due to its impact on circadian rhythms and metabolic process. However, epidemiological evidence on the association between outdoor LAN exposure and MetS remains limited. To determine the relationship between outdoor LAN exposure and MetS, 15,477 adults participated the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. Annual levels of outdoor LAN exposure at participants' residential addresses were assessed using satellite data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Generalized linear mixed effect models were utilized to assess the association of LAN exposure with MetS and its components, including elevated waist circumference (WC), triglycerides (TG), blood pressure (BP), fasting blood glucose (FBG), and reduced high-density lipoprotein cholesterol (HDL-C). Effect modification by various social demographic and behavior factors was also examined. Overall, 4701 (30.37 %) participants were defined as MetS. The LAN exposure ranged from 6.03 to 175.00 nW/cm2/sr. The adjusted odds ratio (OR) of MetS each quartile increment of LAN exposure were 1.43 (95 % CI: 1.21-1.69), 1.44 (95 % CI: 1.19-1.74) and 1.52 (95 % CI: 1.11-2.08), respectively from Q2-Q4. Similar adverse associations were also found for the components of MetS, especially for elevated BP, TG and FBG. Interaction analyses indicated that the above associations were stronger in participants without habitual exercise compared with those with habitual exercise (e.g. OR were 1.52 [95 % CI: 1.28-1.82] vs. 1.27 [95 % CI, 1.04-1.55], P-interaction = 0.042 for MetS). These findings suggest that long-term exposure to LAN can have a significant deleterious effect on MetS, potentially making LAN an important modifiable environmental factor to target in future preventive strategies.
RESUMEN
Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.
Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Xantófilas , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Xantófilas/farmacología , Xantófilas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias Faríngeas/tratamiento farmacológico , Neoplasias Faríngeas/patología , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Metástasis de la Neoplasia , Simulación del Acoplamiento MolecularRESUMEN
BACKGROUND: Recent evidences highlight the potential impact of outdoor Light at Night (LAN) on executive function. However, few studies have investigated the association between outdoor LAN exposure and executive function. METHODS: We employed data from 48,502 Chinese children aged 5-12 years in a cross-sectional study conducted in Guangdong province during 2020-2021, to examine the association between outdoor LAN and executive function assessed using the validated parent-completed Behavior Rating Inventory of Executive Function. We assessed children's outdoor LAN exposure using the night-time satellite images based on the residential addresses. We used generalized linear mixed models to estimate the association between outdoor LAN exposure and executive function scores and executive dysfunction. RESULTS: After adjusting for potential covariates, higher quintiles of outdoor LAN exposure were associated with poorer executive function. Compared to the lowest quintile (Q1), all higher quintiles of exposure showed a significant increased global executive composite (GEC) score with ß (95% confidence intervals, CI) of 0.58 (0.28, 0.88) in Q2, 0.59 (0.28, 0.9) in Q3, 0.85 (0.54, 1.16) in Q4, and 0.76 (0.43, 1.09) in Q5. Higher quintiles of exposure were also associated with higher risks for GEC dysfunction with odd ratios (ORs) (95% CI) of 1.34 (1.18, 1.52) in Q2, 1.40 (1.24, 1.59) in Q3, 1.40 (1.23, 1.59) in Q4, and 1.39 (1.22, 1.58) in Q5. And stronger associations were observed in children aged 10-12 years. CONCLUSIONS: Our study suggested that high outdoor LAN exposure was associated with poor executive function in children. These findings suggested that future studies should determine whether interventions to reduce outdoor LAN exposure can have a positive effect on executive function.
Asunto(s)
Función Ejecutiva , Humanos , Niño , Masculino , Femenino , Estudios Transversales , Preescolar , China , Exposición a Riesgos Ambientales , Luz , Iluminación/efectos adversos , Pueblos del Este de AsiaRESUMEN
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Asunto(s)
Barrera Hematoencefálica , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Dióxido de Silicio , Animales , Humanos , Ratones , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/química , Portadores de Fármacos/química , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Ligandos , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/química , Porosidad , Dióxido de Silicio/químicaRESUMEN
While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.
Asunto(s)
Barrera Hematoencefálica , Docetaxel , Resistencia a Antineoplásicos , Glioblastoma , Nanopartículas , Dióxido de Silicio , Temozolomida , Temozolomida/química , Temozolomida/farmacología , Temozolomida/uso terapéutico , Temozolomida/farmacocinética , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Docetaxel/química , Docetaxel/farmacología , Docetaxel/farmacocinética , Docetaxel/uso terapéutico , Dióxido de Silicio/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Animales , Nanopartículas/química , Humanos , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Porosidad , Portadores de Fármacos/química , Ratones Desnudos , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacosRESUMEN
BACKGROUND: Although the indoor environment has been proposed to be associated with childhood sleep health, to our knowledge no study has investigated the association between home renovation and childhood sleep problems. METHODS: The study included 186,470 children aged 6-18 years from the National Chinese Children Health Study (2012-2018). We measured childhood sleeping problems via the Chinese version of the Sleep Disturbance Scale for Children (C-SDSC). Information on home renovation exposure within the recent 2 years was collected via parent report. We estimated associations between home renovation and various sleeping problems, defined using both continuous and categorized (binary) C-SDSC t-scores, using generalized mixed models. We fitted models with city as a random effect variable, and other covariates as fixed effects. RESULTS: Out of the overall participants, 89,732 (48%) were exposed to recent home renovations. Compared to the unexposed group, children exposed to home renovations had higher odds of total sleep disorder (odd ratios [OR] = 1.3; 95% confidence interval [CI] = 1.2, 1.4). Associations varied when we considered different types of home renovation materials. Children exposed to multiple types of home renovation had higher odds of sleeping problems. We observed similar findings when considering continuous C-SDSC t-scores. Additionally, sex and age of children modified the associations of home renovation exposure with some of the sleeping problem subtypes. CONCLUSIONS: We found that home renovation was associated with higher odds of having sleeping problems and that they varied when considering the type of renovation, cumulative exposure, sex, and age differences.
Asunto(s)
Convulsiones , Trastornos del Sueño-Vigilia , Niño , Humanos , Encuestas y Cuestionarios , Ciudades , China/epidemiología , Trastornos del Sueño-Vigilia/epidemiologíaRESUMEN
BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Asunto(s)
Péptidos de Penetración Celular , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Hígado/patología , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Anthropogenic heat has been reported to have significant health impacts, but research on its association with childhood adiposity is still lacking. In this study, we matched the 2008-2012 average anthropogenic heat flux, as simulated by a grid estimation model using inventory methods, with questionnaire and measurement data of 49,938 children randomly recruited from seven cities in Northeast China in 2012. After adjusting for social demographic and behavioral factors, we used generalized linear mixed-effect models to assess the association between anthropogenic heat flux and adiposity among children. We also examined the effect modification of various social demographic and behavioral confounders. We found that each 10 W/m2 increase in total anthropogenic heat flux and that from the industry source was associated with an increase of 5.82% (95% CI = 0.84%-11.05%) and 6.62% (95% CI = 0.87%-12.70%) in the odds of childhood adiposity. Similarly, the excess rate of adiposity among children were 5.26% (95% CI = -1.33%-12.29%) and 8.51% (95% CI = 2.24%-15.17%) per 1 W/m2 increase in the anthropogenic heat flux from transportation and buildings, and was 7.94% (95% CI = 2.28%-13.91%) per 0.001 W/m2 increase in the anthropogenic heat flux from human metabolism. We also found generally greater effect estimates among female children and children who were exposed to passive smoking during pregnancy, born by caesarean section, non-breastfed/mixed-fed, or lived within 20 m adjacent to the main road. The potential deleterious effect of anthropogenic heat exposure on adiposity among children may make it a new but major threat to be targeted by future mitigation strategies.
Asunto(s)
Adiposidad , Calor , Niño , Humanos , Femenino , Embarazo , Cesárea , China/epidemiología , Obesidad , Actividades HumanasRESUMEN
Integrating the versatility of synthetic nanoparticles to natural biomaterials, such as cells or cell membranes, has gained considerable attention as promising alternative cargo delivery platforms in recent years. Extracellular vesicles (EVs), natural nanomaterials composed of a protein-rich lipid bilayer secreted by cells, have also shown advantages and great potential as a nano delivery platform in combination with synthetic particles due to their specific natural properties in overcoming several biology hurdles possessed in the recipient cell. Therefore, the preservation of EV's origin properties is critical for their application as nanocarriers. This chapter will describe the encapsulation procedure of MSN encapsulated in EV membrane derived from mouse renal adenocarcinoma (Renca) cells through biogenesis. The FMSN-enclosed EVs produced through this approach still contain preserved EV's natural membrane properties.
Asunto(s)
Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , Nanopartículas , Animales , Ratones , Carcinoma de Células Renales/metabolismo , Dióxido de Silicio/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Renales/metabolismoRESUMEN
Particulate matter (PM) exposure is associated to the adverse change in blood lipids. Vitamin D is beneficial to lipid metabolism, but whether vitamin D levels modifies the impact of air pollutants on lipids is unclear. The purpose of the study was to investigate if vitamin D modifies the associations of PM and serum lipids in young healthy people. From December 2017 to January 2018, a panel study with five once weekly follow-ups was conducted on 88 healthy adults aged 21.09 (1.08) (mean (SD)) years on average in Guangzhou, China. We measured serum lipids, serum 25-hydroxyvitamin D (25(OH)D) concentrations (440 blood samples in total), mass concentrations of particulate matter with diameters ≤2.5 µm (PM2.5), ≤1.0 µm (PM1.0), and ≤0.5 µm (PM0.5), and number concentrations of particulate matter with diameters ≤0.2 µm (PN0.2) and ≤0.1 µm (PN0.1) at each follow-up. Linear mixed-effect models were applied to assess the interaction of vitamin D and size-fractionated PM short-term exposure on four lipid metrics. We found the interactions between 25(OH)D and size-fractionated PM exposure on blood lipids in different lags (lag 3 days and 4 days). An interquartile range increase in PM2.5, PM1.0, PM0.5 were significantly associated with increments of 12.30%, 12.99%, and 13.66% in triglycerides (TGs) at lag 4 days at vitamin D levels <15 ng/mL group, respectively. Similar results were found for PN0.2, PN0.1 and low-density lipoprotein cholesterol (LDL-C). All the associations between size-fractionated PM and blood lipids were found null statistically significant in vitamin D levels ≥15 ng/mL group.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Adulto , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Vitamina D , Vitaminas , China , Lípidos , Exposición a Riesgos Ambientales , Contaminación del Aire/análisisRESUMEN
Mg-Zn-Ca bulk metallic glass (BMG) is a promising orthopedic fixation implant because of its biodegradable and biocompatible properties. Structural supporting bone implants with osteoinduction properties for effective bone regeneration have been highly desired in recent years. Osteogenic growth peptide (OGP) can increase the proliferation and differentiation of mesenchymal stem cells and enhance the mineralization of osteoblast cells. However, the short half-life and non-specificity to target areas limit applications of OGP. Mesoporous silica nanoparticles (MSNs) as nanocarriers possess excellent properties, such as easy surface modification, superior targeting efficiency, and high loading capacity of drugs or proteins. Accordingly, we propose a system of combining the OGP-containing MSNs with Mg-Zn-Ca BMG materials to promote bone regeneration. In this work, we conjugated cysteine-containing OGP (cgOGP, 16 a.a.) to interior walls of channels in MSNs and maintained the dispersity of MSNs via PEGylation. An in vitro study showed that metal ions released from Mg-Zn-Ca BMG promoted cell proliferation and migration and elevated alkaline phosphatase (ALP) activity and mineralization. On treating cells with both BMG ion-containing Minimum Essential Medium Eagle-alpha modification (α-MEM) and OGP-conjugated MSNs, enhanced focal adhesion turnover and promoted differentiation were observed. Hematological analyses showed the biocompatible nature of this BMG/nanocomposite system. In addition, in vivo micro-computed tomographic and histological observations revealed that our system stimulated osteogenesis and new bone formation around the implant site.
RESUMEN
In recent years, several publications reported that nanoparticles larger than the kidney filtration threshold were found intact in the urine after being injected into laboratory mice. This theoretically should not be possible, as it is widely known that the kidneys prevent molecules larger than 6-8 nm from escaping into the urine. This is interesting because it implies that some nanoparticles can overcome the size limit for renal clearance. What kinds of nanoparticles can "bypass" the glomerular filtration barrier and cross into the urine? What physical and chemical characteristics are essential for nanoparticles to have this ability? And what are the biomolecular and cellular mechanisms that are involved? This review attempts to answer those questions and summarize known reports of renal-clearable large nanoparticles.
Asunto(s)
Barrera de Filtración Glomerular , Riñón/fisiología , Nanopartículas , Animales , RatonesRESUMEN
Reversing the immunosuppressive tumor microenvironment (TME) is a strategic initiative to sensitize cancer immunotherapy. Emerging evidence shows that cyclic diguanylate monophosphate (c-di-GMP or cdG) can induce the stimulator of interferon genes (STING) pathway activation of antigen-presenting cells (APCs) and upregulate expression of type I interferons (IFNs) to enhance tumor immunogenicity. In vitro anionic cdG revealed fast plasma clearance, poor membrane permeability, and inadequate cytosolic bioavailability. Therefore, we explored a comprehensive "in situ vaccination" strategy on the basis of nanomedicine to trigger robust antitumor immunity. Rhodamine B isothiocyanate (RITC) fluorescent mesoporous silica nanoparticles (MSN) synthesized and modified with poly(ethylene glycol) (PEG) and an ammonium-based cationic molecule (TA) were loaded with negatively charged cdG via electrostatic interactions to form cdG@RMSN-PEG-TA. Treatment of RAW 264.7 cells with cdG@RMSN-PEG-TA markedly stimulated the secretion of IL-6, IL-1ß, and IFN-ß along with phospho-STING (Ser365) protein expression. In vivo cdG@RMSN-PEG-TA enhanced infiltration of leukocytes, including CD11c+ dendritic cells, F4/80+ macrophages, CD4+ T cells, and CD8+ T cells within the tumor microenvironment (TME), resulting in dramatic tumor growth inhibition in 4T1 breast tumor-bearing Balb/c mice. Our findings suggest that a nanobased platform can overcome the obstacles bare cdG can face in the TME. Our approach of an in situ vaccination using a STING agonist provides an attractive immunotherapy-based strategy for treating breast cancer.
Asunto(s)
Neoplasias de la Mama/terapia , GMP Cíclico/análogos & derivados , Activación de Linfocitos/efectos de los fármacos , Proteínas de la Membrana/agonistas , Nanopartículas/química , Dióxido de Silicio/química , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , GMP Cíclico/farmacología , Femenino , Colorantes Fluorescentes/química , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C , Porosidad , Células RAW 264.7 , Rodaminas/química , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
Mesoporous silica nanoparticles (MSNs) have emerged as a prominent nanomedicine platform, especially for tumor-related nanocarrier systems. However, there is increasing concern about the ability of nanoparticles (NPs) to penetrate solid tumors, resulting in compromised antitumor efficacy. Because the physicochemical properties of NPs play a significant role in their penetration and accumulation in solid tumors, it is essential to systematically study their relationship in a model system. Here, we report a multihierarchical assessment of the accumulation and penetration of fluorescence-labeled MSNs with nine different physicochemical properties in tumor spheroids using two-photon microscopy. Our results indicated that individual physicochemical parameters separately could not define the MSNs' ability to accumulate in a deeper tumor region; their features are entangled. We observed that the MSNs' stability determined their success in reaching the hypoxia region. Moreover, the change in the MSNs' penetration behavior postprotein crowning was associated with both the original properties of NPs and proteins on their surfaces.
RESUMEN
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) via co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Asunto(s)
Lisosomas/química , Nanopartículas/química , Dióxido de Silicio/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Porosidad , Propiedades de Superficie , Células Tumorales CultivadasRESUMEN
Transcription factor complex NF-κB (p65/p50) is localized to the cytoplasm by its inhibitor IκBα. Upon activation, the Rel proteins p65/p50 are released from IκBα and transported through nuclear pore to affect many gene expressions. While inhibitions of up or down stream signal pathways are often ineffective due to crosstalks and compensations, direct blocking of the Rel proteins p65/p50 has long been proposed as a potential target for cancer therapy. In this work, a nanoparticle/antibody complex targeting NF-κB is employed to catch the Rel protein p65 in perinuclear region and thus blocking the translocation near the nuclear pore gate. TAT peptide conjugated on mesoporous silica nanoparticles (MSN) help non-endocytosis cell-membrane transducing and converge toward perinuclear region, where the p65 specific antibody performed the targeting and catching against active NF-κB p65 effectively. The size of the p65 bound nanoparticle becomes too big to enter nucleus. Simultaneous treatment of mice with the hybrid MSN and doxorubicin conferred a significant therapeutic effect against 4T1 tumor-bearing mice. The new approach of anti-body therapy targeting on transcription factor with "nucleus focusing" and "size exclusion blocking" effects of the antibody-conjugated nanoparticle is general and may be applicable to modulating other transcription factors.
Asunto(s)
FN-kappa B , Nanopartículas , Transporte Activo de Núcleo Celular , Animales , Ratones , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismoRESUMEN
Reactive oxygen species (ROS)-induced oxidative stress leads to neuron damage and is involved in the pathogenesis of chronic inflammation in neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Researchers, therefore, are looking for antiinflammatory drugs and gene therapy approaches to slow down or even prevent neurological disorders. Combining therapeutics has shown a synergistic effect in the treatment of human diseases. Many nanocarriers could be designed for the simultaneous codelivery of drugs with genes to fight diseases. However, only a few researches have been performed in NDs. In this study, we developed a mesoporous silica nanoparticle (MSN)-based approach for neurodegenerative therapy. This MSN-based platform involved multiple designs in the targeted codelivery of (1) curcumin, a natural antioxidant product, to protect ROS-induced cell damage and (2) plasmid RhoG-DsRed, which is associated with the formation of lamellipodia and filopodia for promoting neurite outgrowth. At the same time, TAT peptide was introduced to the plasmid RhoG-DsRed via electrostatic interaction to elevate the efficiency of nonendocytic pathways and the nuclear plasmid delivery of RhoG-DsRed in cells for enhanced gene expression. Besides, such a plasmid RhoG-DsRed/TAT complex could work as a noncovalent gatekeeper. The release of curcumin inside the channel of the MSN could be triggered when the complex was dissociated from the MSN surface. Taken together, this MSN-based platform combining genetic and pharmacological manipulations of an actin cytoskeleton as well as oxidative stress provides an attractive way for ND therapy.
Asunto(s)
Curcumina/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Proyección Neuronal/efectos de los fármacos , Plásmidos/metabolismo , Dióxido de Silicio/química , Citoesqueleto de Actina/efectos de los fármacos , Animales , Línea Celular Tumoral , Curcumina/química , GTP Fosfohidrolasas/genética , Ratones , Estrés Oxidativo , Tamaño de la Partícula , Fragmentos de Péptidos/química , Plásmidos/química , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/químicaRESUMEN
Mesoporous silica nanoparticles (MSNs) hold great potential as a versatile platform for biomedical applications, especially drug delivery. However, evidence shows that MSNs even when PEGylated are rapidly cleared from the bloodstream by the monocyte phagocytic system. Erythrocytes, also called red blood cells (RBCs), can serve as biocompatible carriers of various bioactive substances, including drugs, enzymes, and peptides. In this work, we synthesize a series of fluorescent PEGylated MSNs with different synthetic diameters ranging from 10 to 200 nm and investigate the size effect on their encapsulation in human RBCs (hRBCs) by a hypotonic dialysis-based method. According to fluorescence images and flow cytometry analyses, we demonstrated that a hydrodynamic diameter below 30 nm is critical for efficient MSN encapsulation. Confocal microscopy and scanning electron microscopy images further confirmed that PEGylated MSNs were successfully embedded inside RBC. PEGylation serves an important role not only for stabilizing MSNs in biological milieu but also for reducing significant hemolysis caused by bare MSNs and thus for successful encapsulation. In addition to PEGylation, we further introduce positively charged functional groups onto the MSNs to show that nanoparticle-encapsulated hRBCs could serve as depots for delivering biological molecules through electrostatic attraction or chemical conjugation with MSNs. Also, we verify the existence of CD47 membrane protein, a marker of self, on the nanoparticle-encapsulated hRBCs and assess its ability of circulation in the blood, which could act as a circulation reservoir for delivering pharmacological substances through an osmosis-based method with MSNs.
Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Eritrocitos/metabolismo , Nanopartículas/química , Dióxido de Silicio/química , Animales , Antígeno CD47/sangre , Antígeno CD47/metabolismo , Eritrocitos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Hemólisis/efectos de los fármacos , Humanos , Ratones , Ratones SCID , Microscopía Confocal , Nanopartículas/toxicidad , Polietilenglicoles/química , Dióxido de Silicio/farmacocinéticaRESUMEN
The unique features of Mesoporous Silica Nanoparticles (MSNs) provide a suitable platform to carry fluorescence dyes for various bioimaging applications. Several strategies have been developed to conjugate a variety of dyes either in the pores or on the surfaces of MSNs to form the fluorescence MSNs (FMSNs). In this chapter, we will discuss recent research progress and future development of FMSNs for living system imaging. We will first describe different strategies for the fabrications of FMSNs. Then, we will discuss the recent developments of cellular and intracellular imaging including self-probe for the interactions of FMSNs with the cells, receptor and organelle labeling, sensing and tracking of biological system, and monitoring the drug delivery and release processes. Moreover, we will include the applications of FMSNs as contrast agents for in vivo imaging. Finally, we will conclude and highlight the challenges and opportunities for MSNs in medical applications.