RESUMEN
The phospholipase Ds (PLDs) are crucial for cellular signalling and play roles in plant abiotic stress response. In this study, we identified 12 PLD genes from the genome data of perennial ryegrass (Lolium perenne), which is widely used as forage and turfgrass. Among them, LpPLDδ3 was significantly repressed by ABA treatment, and induced by drought stress and heat stress treatments. The ectopic overexpression (OE) of LpPLDδ3 in Arabidopsis enhanced plant tolerance to osmotic and heat stress as demonstrated by an increased survival rate and reduced malondialdehyde (MDA) accumulation and electrolyte leakage (EL). Arabidopsis endogenous ABA RESPONSIVE ELEMENT BINDING FACTORs (ABFs) and heat stress responsive genes were elevated in LpPLDδ3 OE lines under osmotic and heat stress treatments. Additionally, overexpression of LpPLDδ3 in perennial ryegrass protoplasts could increase heat stress tolerance and elevate expression level of heat stress responsive genes. Moreover, LpABF2 and LpABF4 depressed the LpPLDδ3 expression by directly binding to its ABRE core-binding motif of promoter region. In summary, LpPLDδ3 was repressed by LpABF2 and LpABF4 and positively involved in perennial ryegrass osmotic and heat stress responses.
RESUMEN
Coronary artery bypass grafting is acknowledged as a major clinical approach for treatment of severe coronary artery atherosclerotic heart disease. This procedure typically requires autologous small-diameter vascular grafts. However, the limited availability of the donor vessels and associated trauma during tissue harvest underscore the necessity for artificial arterial alternatives. Herein, decellularized bovine intercostal arteries were successfully fabricated with lengths ranging from 15 to 30 cm, which also closely match the inner diameters of human coronary arteries. These decellularized arterial grafts exhibited great promise following poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting from the inner surface. Such surface modification endowed the decellularized arteries with superior mechanical strength, enhanced anticoagulant properties and improved biocompatibility, compared to the decellularized bovine intercostal arteries alone, or even those decellularized grafts modified with both heparin and vascular endothelial growth factor. After replacement of the carotid arteries in rabbits, all surface-modified vascular grafts have shown good patency within 30 days post-implantation. Notably, strong signal was observed after α-SMA immunofluorescence staining on the PMPC-grafted vessels, indicating significant potential for regenerating the vascular smooth muscle layer and thereby restoring full structures of the artery. Consequently, the decellularized bovine intercostal arteries surface modified by PMPC can emerge as a potent candidate for small-diameter artificial blood vessels, and have shown great promise to serve as viable substitutes of arterial autografts.
RESUMEN
Bladder Urothelial Carcinoma (BLCA), a prevalent and lethal cancer, lacks understanding regarding the roles and prognostic value of cuproptosis-related lncRNAs (CRLs), a novel form of cell death induced by copper. We collected RNA-seq data, clinical information, and prognostic data for 414 BLCA samples and 19 matched controls from The Cancer Genome Atlas. Using multivariate and univariate Cox regression analyses, we identified CRLs to create a prognostic signature. Patients were then divided into low- and high-risk groups based on their risk scores. We analyzed overall survival using the Kaplan-Meier method, evaluated stromal and immune scores, and explored functional differences between these risk groups with gene set enrichment analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also conducted to understand the links between CRLs and BLCA development. We developed a prognostic signature using 4 independent CRLs: RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1. This signature independently predicted the prognosis of BLCA patients. High-risk patients had worse outcomes, with gene set enrichment analysis revealing enrichment in tumor- and immune-related pathways in the high-risk group. Notably, high-risk patients exhibited enhanced responses to immunotherapy and conventional chemotherapy drugs like sunitinib, paclitaxel, and gemcitabine. The independent prognostic signature variables RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1 predicted the prognoses of BLCA patients and provided a basis for the study of the mechanism of CRLs in BLCA development and progression, and the guidance of clinical treatments for patients with BLCA.
Asunto(s)
ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , ARN Largo no Codificante/genética , Masculino , Pronóstico , Femenino , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Estimación de Kaplan-Meier , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/mortalidad , Carcinoma de Células Transicionales/patologíaRESUMEN
Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.
Asunto(s)
Coinfección , Infecciones por Coronavirus , Intestinos , Kobuvirus , Linfocitos , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/patogenicidad , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/virología , Coinfección/virología , Coinfección/veterinaria , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Linfocitos/virología , Kobuvirus/patogenicidad , Kobuvirus/genética , Intestinos/virología , Diarrea/virología , Diarrea/veterinaria , Replicación Viral , Gastroenteritis/virología , Gastroenteritis/veterinaria , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/virologíaRESUMEN
Applying high pressure to effectively modulate the electronic and lattice structures of materials could unravel various physical properties associated with phase transitions. In this work, high-pressure-compatible femtosecond pump-probe microscopy was constructed to study the pressure-dependent ultrafast dynamics in black phosphorus (BP) thin films. We observed pressure-driven evolution of the electronic topological transition and three structural phases as the pressure reached â¼22 GPa, which could be clearly differentiated in the transient absorption images containing spatially resolved ultrafast carrier and coherent phonon dynamics. Surprisingly, an anomalous coherent acoustic phonon mode with pressure softening behavior was observed within the range of â¼3-8 GPa, showing distinct laser power and time dependences. Density functional theory calculations show that this mode, identified as the shear mode along the armchair orientation, gains significant electron-phonon coupling strength from out-of-plane compression that leads to decreased phonon frequency. Our results provide insights into the structure evolution of BP with pressure and hold potential for applications in microelectromechanical devices.
RESUMEN
The dissemination of Staphylococcus aureus in the pork production chain is a major food safety concern. Abattoirs can serve both as disruptor and transmitter for S. aureus. In this study, we conducted a systematic genomic epidemiology research on the prevalence, heterogeneity, and transmission of S. aureus in 3,638 samples collected from four pig abattoirs in Hubei province, China. Our findings revealed substantial heterogeneity between S. aureus recovered from samples collected at upstream (from stunning step to head-removal step) and downstream (from splitting step to chilling step) locations within the slaughter process. Overall, 966 (26.6%) samples were positive for S. aureus, with significantly higher overall prevalence for upstream samples (29.0%, 488/1,681) compared to downstream samples (24.4%, 478/1,957). Antimicrobial susceptibility testing demonstrated that the isolates from the upstream exhibited significantly higher resistance proportions to different antimicrobials than those from the downstream. Whole-genome sequencing of 126 isolates revealed that ST398 (32.9%, 23/70) and ST9 (22.9%, 16/70) were more common among upstream isolates, while ST7 (35.7%, 20/56) and ST97 (28.6%, 16/56) were most frequently observed among downstream isolates. Additionally, molecular characterization analysis demonstrated that upstream isolates possessed significantly higher enterotoxigenic potential, more antimicrobial resistance genes, and S. aureus pathogenicity islands than downstream isolates. Notably, we discovered that enterotoxigenic S. aureus could be transmitted across different slaughter stages, with knives, water, and air serving as vectors. Although slaughtering processes had a substantial effect on reducing the food safety risk posed by enterotoxigenic S. aureus, the possibility of its widespread transmission should not be disregarded. IMPORTANCE Staphylococcus aureus (S. aureus) is one of the most important foodborne pathogens, and can cause foodborne poisoning by producing enterotoxins. Pork is a preferable reservoir and its contamination often occurs during the slaughter process. Our findings revealed significant differences in the prevalence, antimicrobial resistance, and enterotoxigenic potential between the upstream and downstream isolates within the slaughter process. Also, it is imperative not to overlook enterotoxigenic S. aureus transmitted across all stages of the slaughter process, with notable vectors being knives, water, and air. These findings hold significant implications for policy-makers to reassess their surveillance projects, and underscore the importance of implementing effective control measures to minimize the risk of S. aureus contamination in pork production. Moreover, we provide a more compelling method of characterizing pathogen transmission based on core-SNPs of bacterial genomes.
RESUMEN
Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, provide an opportunity for beyond-silicon exploration. However, the lab to fab transition of 2D semiconductors is still in its preliminary stages, and it has been challenging to meet manufacturing standards of stability and repeatability. Thus, there is a natural eagerness to grow wafer-level, high-quality films with industrially acceptable scale-cost-performance metrics. Here we report an improved chemical vapour deposition synthesis method in which the controlled release of precursors and substrates predeposited with amorphous Al2O3 ensure the uniform synthesis of monolayer MoS2 as large as 12 inches while also enabling fast and non-toxic growth to reduce manufacturing costs. Transistor arrays were fabricated to further confirm the high quality of the film and its integrated circuit application potential. This work achieves the co-optimization of scale-cost-performance metrics and lays the foundation for advancing the integration of 2D semiconductors in industry-standard pilot lines.
RESUMEN
Efficient access to the synthesis of lactam-derived quinoline through a bicyclic amidine-triggered cyclization reaction from readily prepared o-alkynylisocyanobenzenes has been developed. The reaction was initiated by nucleophilic attack of the bicyclic amidines to o-alkynylisocyanobenzenes, subsequently with intramolecular cyclization to produce a DBU-quinoline-based amidinium salt, followed by hydrolysis to afford the lactam-derived quinoline in moderate to good yields.
Asunto(s)
Lactamas , Quinolinas , Ciclización , Amidinas , HidrólisisRESUMEN
ABSTRACT: Benign metastasizing leiomyomas (BMLs) are benign disseminated extrauterine tumors in patients with prior history of uterine leiomyomas and may occur years after hysterectomy. In this case, we presented 18 F-FDG and 68 Ga-FAPI PET/CT findings in a 37-year-old woman with benign leiomyoma metastasizing to lung and pelvis. The metastatic lesions demonstrated faint 18 F-FDG but elevated 68 Ga-FAPI activity, indicating the low level of glucose metabolism but excessive accumulation of activated fibroblasts in the BMLs. This case demonstrated that 68 Ga-FAPI PET/CT may be potentially useful in the evaluation of BMLs.
Asunto(s)
Fluorodesoxiglucosa F18 , Leiomioma , Femenino , Humanos , Adulto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Leiomioma/diagnóstico por imagen , Transporte Biológico , Radioisótopos de GalioRESUMEN
Continuous monitoring of arterial pulse has great significance for detecting the early onset of cardiovascular disease and assessing health status, while needs pressure sensors with high sensitivity and signal-to-noise ratio (SNR) to accurately capture more health information concealed in pulse waves. Field effect transistors (FETs) combined with the piezoelectric film is an ultrahigh sensitive pressure sensor category, especially when the FET works in the subthreshold regime, where the signal enhancement effect on the piezoelectric response is the most effective. However, controlling the work regime of FET needs extra external bias assistance which will interfere with the piezoelectric response signal and complicate the test system thus making the scheme difficult to implement. Here, we described a gate dielectric modulation strategy to match the subthreshold region of the FET with the piezoelectric output voltage without external gate bias, finally enhancing the sensitivity of the pressure sensor. A carbon nanotube field effect transistor and polyvinylidene fluoride (PVDF) together form the pressure sensor with a high sensitivity of 7 × 10-1kPa-1for a pressure range of 0.038-0.467 kPa and 6.86 × 10-2kPa-1for a pressure range of 0.467-15.5 kPa, SNR, and the ability to continuously monitor pulse in real-time. Additionally, the sensor enables high-resolution detection of weak pulse signals under large static pressure.
Asunto(s)
Nanotubos de Carbono , Pulso Arterial , HumanosRESUMEN
BACKGROUND: Acute pancreatitis (AP) is associated with a high incidence of acute kidney injury (AKI). This study aimed to develop a nomogram for predicting the early onset of AKI in AP patients admitted to the intensive care unit. METHOD: Clinical data for 799 patients diagnosed with AP were extracted from the Medical Information Mart for Intensive Care IV database. Eligible AP patients were randomly divided into training and validation cohorts. The independent prognostic factors for the early development of AKI in AP patients were determined using the all-subsets regression method and multivariate logistic regression. A nomogram was constructed for predicting the early occurrence of AKI in AP patients. The performance of the nomogram was evaluated based on the area under the receiver operating characteristic curve (AUC), calibration curves and decision curve analysis (DCA). RESULTS: Seven independent prognostic factors were identified as predictive factors for early onset AKI in AP patients. The AUC of the nomogram in the training and validation cohorts were 0.795 (95% CI, 0.758-0.832) and 0.772 (95% CI, 0.711-0.832), respectively. The AUC of the nomogram was higher compared with that of the BISAP, Ranson, APACHE II scores. Further, the calibration curve revealed that the predicted outcome was in agreement with the actual observations. Finally, the DCA curves showed that the nomogram had a good clinical applicability value. CONCLUSION: The constructed nomogram showed a good predictive ability for the early occurrence of AKI in AP patients.
Asunto(s)
Lesión Renal Aguda , Pancreatitis , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Bases de Datos Factuales , Pancreatitis/complicaciones , Pancreatitis/diagnóstico , Pancreatitis/epidemiología , Estudios Retrospectivos , Modelos EstadísticosRESUMEN
Resistance to anthelmintics such as ivermectin (IVM) is currently a major problem in the treatment of Haemonchus contortus, an important parasitic nematode of small ruminants. Although many advances have been made in understanding the IVM resistance mechanism, its exact mechanism remains unclear for H. contortus. Therefore, understanding the resistance mechanism becomes increasingly important for controlling haemonchosis. Recent research showed that the metabolic state of bacteria influences their susceptibility to antibiotics. However, little information is available on the roles of metabolites and metabolic pathways in IVM resistance of H. contortus. In this study, comparative analyses of the metabolomics of IVM-susceptible and -resistant adult H. contortus worms were carried out to explore the role of H. contortus metabolism in IVM resistance. In total, 705 metabolites belonging to 42 categories were detected, and 86 differential metabolites (17 upregulated and 69 downregulated) were identified in the IVM-resistant strain compared to the susceptible one. A KEGG pathway analysis showed that these 86 differential metabolites were enriched in 42 pathways that mainly included purine metabolism; the biosynthesis of amino acids; glycine, serine, and threonine metabolism; and cysteine and methionine metabolism. These results showed that amino acid metabolism may be mediated by the uptake of IVM and related with IVM resistance in H. contortus. This study contributes to our understanding of the mechanisms of IVM resistance and may provide effective approaches to manage infection by resistant strains of H. contortus.
RESUMEN
BACKGROUND: Being among the most common malignancies worldwide, hepatocellular carcinoma (HCC) accounting for the third cause of cancer mortality. The regulation of cell death is the most crucial step in tumor progression and has become a crucial target for nearly all therapeutic options. Cuproptosis, a copper-induced cell death, was recently reported in Science. However, its primary function in carcinogenesis is still unclear. METHODS: Cuproptosis-related lncRNAs significantly associated with overall survival (OS) were screened by stepwise univariate Cox regression. The signature of cuproptosis-related lncRNAs for HCC prognosis was constructed by the LASSO algorithm and multivariate Cox regression. Further Kaplan-Meier analysis, proportional hazards model, and ROC analysis were performed. Functional annotation was performed using gene set enrichment analysis (GSEA). The relationship between prognostic cuproptosis-related lncRNAs and HCC prognosis was further explored by GEPIA( http://gepia.cancer-pku.cn/ ) online analysis tool. Finally, we used the ESTIMATE and XCELL algorithms to estimate stromal and immune cells in tumor tissue and cast each sample to infer the underlying mechanism of cuproptosis-related lncRNAs in the tumor immune microenvironment (TIME) of HCC patients. RESULTS: Four cuproptosis-related lncRNAs were used to construct a prognostic lncRNA signature, which was an independent factor in predicting OS in HCC patients. Kaplan-Meier curves showed significant differences in survival rates between risk subgroups (p = 0.002). At the same time, we found that the expression levels of most immune checkpoint genes increased with increasing risk scores. Tumorigenesis and immunological-related pathways were primarily enhanced in the high-risk group, as determined by GSEA. The results of drug sensitivity analysis showed that compared with patients in the high-risk group, the IC50 values of erlotinib and lapatinib were lower in patients in the low-risk group, while the opposite was true for sunitinib, paclitaxel, gemcitabine, and imatinib. We also found that elevated AL133243.2 expression was significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and reduced immune cell infiltration, suggesting that HCC patients with low AL133243.2 expression in tumor tissues may have a better response to immunotherapy. CONCLUSION: Collectively, the cuproptosis-associated lncRNA signature can serve as an independent predictor to guide individual treatment strategies. Furthermore, AL133243.2 is a promising marker for predicting immunotherapy response in HCC patients. This data may facilitate further exploration of more effective immunotherapy strategies for HCC.
Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinogénesis , Carcinoma Hepatocelular/genética , Inmunoterapia , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Microambiente Tumoral , CobreRESUMEN
Parasitic nematodes are important pathogens that infect animals, causing significant economic losses globally. Current repeated treatments have led to widespread anthelmintic resistance in nematode populations, so vaccine development offers an alternative control approach. However, only one effective vaccine (named Barbervax) has been developed to protect animals against one of the most pathogenic nematodes of ruminantsHaemonchus contortus (the barber's pole worm). This vaccine contains a dominant component, Concanavalin A (Con A) purified H11 antigen, which has been shown to induce high levels (>85%) of immune protection in sheep breeds, but in goat breeds, the immunoprotection test of this native protein is still lacking. Here, we evaluated the protective efficacy of low-dose Con A-purified proteins for controlling the H. contortus infection in goats. Four-month-old Boer goats were equally divided into two vaccinated groups of 5 µg and 10 µg native proteins, and one adjuvant control. Each goat was immunized subcutaneously thrice and then challenged with 7000 infective third-stage larvae (L3s). The fecal egg count (FEC), degree of anemia, antibody levels of serum and abomasum mucosa, as well as worm burdens, were detected in experimental goats. Our results showed that both 5 µg and 10 µg vaccinated groups induced the effective protection in goats, reduced mean FEC by 71.8% and 68.6%, and mean worm burdens by 69.8% and 61.6%, respectively, compared to the adjuvant control. In addition, we detected that the serum antibody responses to the Con A-purified proteins were dominated by the IgG subtype, but the mucosal antibody responses were not detected. These data demonstrate Con A-purified proteins induced effective immunoprotection in goats, and underline their significance for controlling this widespread parasite.
RESUMEN
BACKGROUND: Findings on the usefulness of massage therapy (MT) in postoperative pain management are often inconsistent among studies. OBJECTIVES: This study's aim is to conduct a meta-analysis of randomized controlled trials (RCT) to clarify the effects of massage therapy in the treatment of postoperative pain. METHODS: Three databases (PubMed, Embase, and Cochrane Central Register of Controlled Trials) were searched for RCTs published from database inception through January 26, 2021. The primary outcome was pain relief. The quality of RCTs was appraised with the Cochrane Collaboration risk of bias tool. The random-effect model was used to calculate the effect sizes and standardized mean difference (SMD) with 95 % confidential intervals (CIs) as a summary effect. The heterogeneity test was conducted through I2. Subgroup and sensitivity analyses were used to explore the source of heterogeneity. Possible publication bias was assessed using visual inspection of funnel plot asymmetry. RESULTS: The analysis included 33 RCTs and showed that MT is effective in reducing postoperative pain (SMD, -1.32; 95 % CI, -2.01 to -0.63; p = 0.0002; I2 = 98.67 %). A similar significant effect was found for both short (immediate assessment) and long terms (assessment performed 4-6 weeks after the MT). Remarkably, we found neither the duration per session nor the dose had an impact on the effect of MT and there seemed to be no difference in the effects of different MT types. In addition, MT seemed to be more effective for adults. Furthermore, MT had better analgesic effects on cesarean section and heart surgery than orthopedic surgery. LIMITATIONS: Publication bias is possible due to the inclusion of studies in English only. Additionally, the included studies were extremely heterogeneous. Double-blind research on MT is difficult to implement, and none of the included studies is double-blind. There was some heterogeneity and publication bias in the included studies. In addition, there is no uniform evaluation standard for the operation level of massage practitioners, which may lead to research implementation bias. CONCLUSIONS: MT is effective in reducing postoperative pain in both short and long terms.
Asunto(s)
Masaje , Manejo del Dolor , Adulto , Embarazo , Femenino , Humanos , Dolor Postoperatorio/terapia , Terapias Mente-Cuerpo , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Background: Fatty acid metabolism (FAM)-related genes play a key role in the development of stomach adenocarcinoma (STAD). Although immunotherapy has led to a paradigm shift in STAD treatment, the overall response rate of immunotherapy for STAD is low due to heterogeneity of the tumor immune microenvironment (TIME). How FAM-related genes affect TIME in STAD remains unclear. Methods: The univariate Cox regression analysis was performed to screen prognostic FAM-related genes using transcriptomic profiles of the Cancer Genome Atlas (TCGA)-STAD cohort. Next, the consensus clustering analysis was performed to divide the STAD cohort into two groups based on the 13 identified prognostic genes. Then, gene set enrichment analysis (GSEA) was carried out to identify enriched pathways in the two groups. Furthermore, we developed a prognostic signature model based on 7 selected prognostic genes, which was validated to be capable in predicting the overall survival (OS) of STAD patients using the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses. Finally, the "Estimation of STromal and Immune cells in MAlignant Tumours using Expression data" (ESTIMATE) algorithm was used to evaluate the stromal, immune, and ESTIMATE scores, and tumor purity of each STAD sample. Results: A total of 13 FAM-related genes were identified to be significantly associated with OS in STAD patients. Two molecular subtypes, which we named Group 1 and Group 2, were identified based on these FAM-related prognostic genes using the consensus clustering analysis. We showed that Group 2 was significantly correlated with poor prognosis and displayed higher programmed cell death ligand 1 (PD-L1) expressions and distinct immune cell infiltration patterns. Furthermore, using GSEA, we showed that apoptosis and HCM signaling pathways were significantly enriched in Group 2. We constructed a prognostic signature model using 7 selected FAM-related prognostic genes, which was proven to be effective for prediction of STAD (HR = 1.717, 95% CI = 1.105-1.240, p < 0.001). After classifying the patients into the high- and low-risk groups based on our model, we found that patients in the high-risk group tend to have more advanced T stages and higher tumor grades, as well as higher immune scores. We also found that the risk scores were positively correlated with the infiltration of certain immune cells, including resting dendritic cells (DCs), and M2 macrophages. We also demonstrated that elevated expression of gamma-glutamyltransferase 5 (GGT5) is significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and increased immune cell infiltration, suggesting that STAD patients with high GGT5 expression in the tumor tissues might have a better response to immunotherapy. Conclusion: FAM-related genes play critical roles in STAD prognosis by shaping the TIME. These genes can regulate the infiltration of various immune cells and thus are potential therapeutic targets worthy of further investigation. Furthermore, GGT5 was a promising marker for predicting immunotherapeutic response in STAD patients.
RESUMEN
Porcine kobuvirus (PKV) infection is very common in both healthy pigs and diarrhea pigs throughout the world. However, there is no proof that it causes diarrhea, and little is known about its role in diarrhea. There are only a few reports concerning porcine kobuvirus separation at present, which makes investigating its invasion and pathogenesis mechanisms difficult. This study sequenced the entire genome of a porcine kobuvirus strain termed "Wuhan2020" after it was isolated from intestinal tissue samples of healthy piglets. The analysis results revealed that it shared the most resemblance with the WUH1 strain (89.5%) and belonged to the same evolutionary branch as the Hungarian strain S-1-SUN. The PKV was located using the in situ hybridization (ISH) approach, which revealed that it was colonized in intestinal villus epithelial cells and lymphocytes in the Peyer's patch. In general, we analyzed the genetic evolution of PKV, discovered PKV susceptible cells and determined PKV localization in the intestine of infected pigs, providing a reference for future research.
Asunto(s)
Kobuvirus , Infecciones por Picornaviridae , Enfermedades de los Porcinos , Animales , China , Diarrea , Heces , Genómica , Intestinos , Kobuvirus/genética , Filogenia , Infecciones por Picornaviridae/veterinaria , Análisis de Secuencia , PorcinosRESUMEN
BACKGROUND: Ivermectin (IVM) is one of the most important and widely used anthelmintics in veterinary medicine. However, its efficacy is increasingly compromised by widespread resistance, and the exact mechanism of IVM resistance remains unclear for most parasitic nematodes, including Haemonchus contortus, a blood-sucking parasitic nematode of small ruminants. METHODS: In this study, an H. contortus IVM-resistant strain from Zhaosu, Xinjiang, China, was isolated and assessed by the control test, faecal egg count reduction test (FECRT) and the larval development assay (LDA). Subsequently, comparative analyses on the transcriptomics of IVM-susceptible and IVM-resistant adult worms of this parasite were carried out using RNA sequencing (RNA-seq) and bioinformatics. RESULTS: In total, 543 (416 known, 127 novel) and 359 (309 known, 50 novel) differentially expressed genes (DEGs) were identified in male and female adult worms of the resistant strain compared with those of the susceptible strain, respectively. In addition to several previously known candidate genes which were supposed to be associated with IVM resistance and whose functions were involved in receptor activity, transport, and detoxification, we found some new potential target genes, including those related to lipid metabolism, structural constituent of cuticle, and important pathways such as antigen processing and presentation, lysosome, autophagy, apoptosis, and NOD1-like receptor signalling pathways. Finally, the results of quantitative real-time polymerase chain reaction confirmed that the transcriptional profiles of selected DEGs (male: 8 genes, female: 10 genes) were consistent with those obtained by the RNA-seq. CONCLUSIONS: Our results indicate that IVM has multiple effects, including both neuromuscular and non-neuromuscular targets, and provide valuable information for further studies on the IVM resistance mechanism in H. contortus.
Asunto(s)
Antihelmínticos , Hemoncosis , Haemonchus , Enfermedades de las Ovejas , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Resistencia a Medicamentos/genética , Femenino , Hemoncosis/parasitología , Haemonchus/genética , Ivermectina/farmacología , Ivermectina/uso terapéutico , Masculino , Ovinos/genética , Enfermedades de las Ovejas/parasitología , TranscriptomaRESUMEN
Molecule engineering has been demonstrated as a valid strategy to adjust the active layer morphology in all-small-molecule organic solar cells (ASM-OSCs). In this work, two non-fullerene acceptors (NFAs), FO-2Cl and FO-EH-2Cl, with different alkyl side chains are reported and applied in ASC-OSCs. Compared with FO-2Cl, FO-EH-2Cl is designed by replacing the octyl alkyl chains with branched iso-octyl alkyl chains, leading to an enhanced molecular packing, crystallinity, and redshifted absorption. With a small molecule BSFTR as donor, the device of BSFTR:FO-EH-2Cl obtains a better morphology and achieves a higher power conversion efficiency (PCE) of 15.78% with a notable fill factor (FF) of 80.44% than that of the FO-2Cl-based device with a PCE of 15.27% and FF of 78.41%. To the authors' knowledge, the FF of 80.44% is the highest value in ASM-OSCs. These results demonstrate a good example of fine-tuning the molecular structure to achieve suitable active layer morphology with promising performance for ASM-OSCs, which can provide valuable insight into material design for high-efficiency ASM-OSCs.
RESUMEN
Malt is an important raw material in brewing beer. With the increasing development of craft beer, brewing malt has contributed diverse colours and abundant flavours to beer. While "malty" and "worty" were commonly used to describe the malt flavour of beer, they are still inadequate. This study focused on developing of a sensory lexicon and a sensory wheel for brewing malt. Here, a total of 22 samples were used for sensory evaluation. The panels identified 53 attributes to form the lexicon of brewing malt, including appearance, flavour, taste, and mouthfeel. After consulting with the experts from the brewing industry, 46 attributes were selected from the lexicon list to construct the sensory wheel. Based on the lexicon, rate-all-that-apply analysis was used to discriminate between six samples of different malt types. The principal component analysis results showed that malt types were significantly correlated with sensory features. To further understand the chemical origin of sensory attributes, partial least squares regression analysis was used to determine the association between the aroma compounds and sensory attributes. According to the colour range and malt types, 18 samples were used for sensory descriptive analysis and volatile compounds identification. Seven main flavours were selected from the brewing malt sensory wheel. 34 aroma compounds were identified by headspace solid phase microextraction gas chromatography-mass spectrometry-olfactometry. According to the partial least squares regression results, the aroma compounds were highly correlated with the sensory attributes of the brewing malt. This approach may have practical applications in the sensory studies of other products.