Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Heliyon ; 10(11): e32133, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868052

RESUMEN

Carbon dots (CDs), as a new kind of fluorescent nanomaterials, show great potential for application in several fields due to their unique nano-size effect, easy surface functionalization, controllable photoluminescence, and excellent biocompatibility. Conventional preparation methods for CDs typically involve top-down and bottom-up approaches. Doping is a major step forward in CDs design methodology. Chemical doping includes both non-metal and metal doping, in which non-metal doping is an effective strategy for modulating the fluorescence properties of CDs and improving photocatalytic performance in several areas. In recent years, Metal-doped CDs have aroused the interest of academics as a promising nano-doping technique. This approach has led to improvements in the physicochemical and optical properties of CDs by altering their electron density distribution and bandgap capacity. Additionally, the issues of metal toxicity and utilization have been addressed to a large extent. In this review, we categorize metals into two major groups: transition group metals and rare-earth group metals, and an overview of recent advances in biomedical applications of these two categories, respectively. Meanwhile, the prospects and the challenges of metal-doped CDs for biomedical applications are reviewed and concluded. The aim of this paper is to break through the existing deficiencies of metal-doped CDs and fully exploit their potential. I believe that this review will broaden the insight into the synthesis and biomedical applications of metal-doped CDs.

2.
ACS Biomater Sci Eng ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829538

RESUMEN

Titanium (Ti) and its alloys are widely used biomaterials in bone repair. Although these biomaterials possess stable properties and good biocompatibility, the high elastic modulus and low surface activity of Ti implants have often been associated with infection, inflammation, and poor osteogenesis. Therefore, there is an urgent need to modify the surface of Ti implants, where changes in surface morphology or coatings loading can confer specific functions to help them adapt to the osseointegration formation phase and resist bacterial infection. This can further ensure a healthy microenvironment for bone regeneration as well as the promotion of immunomodulation, angiogenesis, and osteogenesis. Therefore, in this review, we evaluated various functional Ti implants after surface modification, both in terms of static modifications and dynamic response strategies, mainly focusing on the synergistic effects of antimicrobial activities and functionalized osteogenic. Finally, the current challenges and future perspectives are summarized to provide innovative and effective solutions for osseointegration and bone defect repair.

3.
PLoS One ; 19(5): e0300316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814894

RESUMEN

Bactrian camels inhabiting desert and semi-desert regions of China are valuable animal models for studying adaptation to desert environments and heat stress. In this study, 16S rRNA technology was employed to investigate the distribution characteristics and differences of mucosal microorganisms in the anterior gland area, posterior gland area, third gland area, cardia gland area, gastric fundic gland area and pyloric gland area of 5-peak adult healthy Bactrian camels. We aimed to explore the possible reasons for the observed microbial distribution from the aspects of histological structure and mucosal immunity. Bacteroides and Fibrobacteria accounted for 59.54% and 3.22% in the gland area, respectively, and 52.37% and 1.49% in the wrinkled stomach gland area, respectively. The gland area showed higher abundance of Bacteroides and Fibrobacteria than the wrinkled stomach gland area. Additionally, the anterior gland area, posterior gland area, third gland area, and cardia gland area of Bactrian camels mainly secreted acidic mucus, while the gastric fundic gland area mainly secreted neutral mucus and the pyloric region mainly secreted a mixture of acidic and neutral mucus. The results of immunohistochemistry techniques demonstrated that the number of IgA+ cells in the anterior glandular area, posterior glandular area, third glandular area, and cardia gland area was significantly higher than that in the fundic and pyloric gland area (p < 0.05), and the difference in IgA+ between the fundic and pyloric gland area was not significant (p > 0.05). The study revealed a large number of bacteria that can digest and degrade cellulose on the mucosa of the gastric gland area of Bactrian camels. The distribution of IgA+ cells, the structure of the mucosal tissue in the glandular region, and the composition of the mucus secreted on its surface may have a crucial influence on microbial fixation and differential distribution.


Asunto(s)
Camelus , Mucosa Gástrica , Inmunidad Mucosa , ARN Ribosómico 16S , Animales , Camelus/microbiología , Camelus/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , ARN Ribosómico 16S/genética , Bacterias/clasificación , Inmunoglobulina A/metabolismo , Masculino
4.
Artículo en Inglés | MEDLINE | ID: mdl-38657655

RESUMEN

An essential factor in tooth nutritional deficits and aberrant root growth is pulp necrosis. Removing inflammatory or necrotic pulp tissue and replacing it with an inert material are the most widely used therapeutic concepts of endodontic treatment. However, pulp loss can lead to discoloration, increased fracture risk, and the reinfection of the damaged tooth. It is now anticipated that the pulp-dentin complex will regenerate through a variety of application methods based on human dental pulp stem cells (hDPSC). In order to create a photo-cross-linked gelatinized methacrylate hydrogel, GelMA/EUO-CDs-E (ECE), that is biodegradable and injectable for application, we created a novel nanoassembly of ECE based on eucommia carbon dots (EUO-CDs) and epigallocatechin gallate (EGCG). We then loaded it onto gelatin methacryloyl (GelMA) hydrogel. We have evaluated the material and examined its in vivo and in vitro angiogenesis-promoting potential as well as its dentin differentiation-enabling characteristics. The outcomes of the experiment demonstrated that GelMA/ECE was favorable to cell proliferation and enhanced hDPSC's capacity for angiogenesis and dentin differentiation. The regeneration of vascular-rich pulp-like tissues was found to occur in vivo when hDPSC-containing GelMA/ECE was injected into cleaned human root segments (RS) for subcutaneous implantation in nude mice. This suggests that the injectable bioscaffold is appropriate for clinical use in pulp regenerative medicine.

5.
ACS Omega ; 9(16): 17784-17807, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680314

RESUMEN

Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.

6.
J Nanobiotechnology ; 22(1): 210, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671474

RESUMEN

Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.


Asunto(s)
Infecciones Bacterianas , Carbono , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Puntos Cuánticos , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamiento farmacológico , Carbono/química , Carbono/uso terapéutico , Carbono/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo
7.
J Biomed Mater Res B Appl Biomater ; 112(3): e35400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456343

RESUMEN

Lithium disilicate (Li2 Si2 O5 ) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2 Si2 O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2 Si2 O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 µg/cm2 , complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.


Asunto(s)
Cerámica , Contención de Riesgos Biológicos , Animales , Ratones , Conejos , Ensayo de Materiales , Solubilidad , Propiedades de Superficie , Cerámica/química , Porcelana Dental , Litio
8.
Mater Today Bio ; 26: 101032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533376

RESUMEN

The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.

10.
Comput Methods Biomech Biomed Engin ; 27(3): 296-305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36939836

RESUMEN

OBJECTIVES: To evaluate the biomechanical system of molar distalization with clear aligner therapy (CAT) combined with angel button using interradicular mini-implants (IRMIs) with varying elastic forces. MATERIALS AND METHODS: FE models including maxilla, complete maxillary dentition, periodontal ligaments (PDL), composite attachments, mini-implants (MI), and dedicated orthodontic aligner, were constructed. Three groups were created in accordance with the sagittal position of MI. Elastic forces (0 N,1 N,1.5 N,2 N) were applied. RESULTS: CAT without elastics caused labial tipping and intrusion of the anterior teeth. Initial labial tipping and the von Mises stress of the maxillary anterior teeth decreased as the elastic forces increased.


Asunto(s)
Aparatos Ortodóncicos Removibles , Tracción , Análisis de Elementos Finitos , Diente Molar/cirugía , Ligamento Periodontal , Maxilar/cirugía , Técnicas de Movimiento Dental
11.
J Biomed Mater Res B Appl Biomater ; 112(1): e35334, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776023

RESUMEN

The use of glass-ceramics in the medical field has grown significantly since the 1980s. With excellent aesthetic properties, semi-translucency, outstanding mechanical properties, corrosion resistance, wear resistance and great biocompatibility and workability glass-ceramics is one of the most commonly used materials in restorative dentistry and is widely used in veneers, inlays, onlays, all-ceramic crowns, and implant abutments. This review provides an overview of the research progress of glass-ceramics in restorative dentistry, focusing on the classification, performance requirements, toughening mechanisms and their association with clinical performance, as well as the manufacturing and fabrication of glass-ceramics in restorative dentistry. Finally, the developments and prospects of glass-ceramics in restorative dentistry are summarized and discussed.


Asunto(s)
Cerámica , Odontología , Porcelana Dental , Ensayo de Materiales
12.
Biomater Sci ; 12(2): 308-329, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38108454

RESUMEN

Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.


Asunto(s)
Hidrogeles , Nanopartículas , Humanos , Hidrogeles/química , Polímeros , Nanopartículas/química
13.
J Nanobiotechnology ; 21(1): 501, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129853

RESUMEN

Oral and maxillofacial diseases are one of the most prevalent diseases in the world, which not only seriously affect the health of patients' oral and maxillofacial tissues, but also bring serious economic and psychological burdens to patients. Therefore, oral and maxillofacial diseases require effective treatment. Traditional treatments have limited effects. In recent years, nature exosomes have attracted increasing attention due to their ability to diagnose and treat diseases. However, the application of nature exosomes is limited due to low yield, high impurities, lack of targeting, and high cost. Engineered exosomes can be endowed with better comprehensive therapeutic properties by modifying exosomes of parent cells or directly modifying exosomes, and biomaterial loading exosomes. Compared with natural exosomes, these engineered exosomes can achieve more effective diagnosis and treatment of oral and maxillary system diseases, and provide reference and guidance for clinical application. This paper reviews the engineering modification methods of exosomes and the application of engineered exosomes in oral and maxillofacial diseases and looks forward to future research directions.


Asunto(s)
Exosomas , Humanos , Materiales Biocompatibles
14.
Int J Nanomedicine ; 18: 6813-6828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026533

RESUMEN

Background: Carbon dots (CDs), a novel nanomaterial, have gained significant attention over the past decade due to their remarkable fluorescence properties, low toxicity, and biocompatibility. These characteristics make them promising in various applications, especially in biomedicine. However, most CDs are currently synthesized using chemical materials, and their biocompatibility falls short of natural compounds. Research on extracting CDs from natural sources is limited, and their potential in biomedicine remains largely unexplored. Methods: We extracted CDs from resveratrol, a natural plant compound, and enhanced their water solubility using citric acid. Characterization of resveratrol-based carbon dots (RES-CDs) was carried out using various techniques, including UV-Vis, SEM, TEM, FTIR, XRD, and fluorescence spectroscopy. Extensive biocompatibility tests, wound healing assays, cell migration studies, and angiogenesis experiments were conducted using human umbilical vein endothelial cells (HUVEC). In addition, we investigated the biocompatibility and wound healing potential of RES-CDs in an in vivo rat model of inflammation. Results: RES-CDs exhibited stable yellow-green fluorescence under 365-nanometer ultraviolet light and demonstrated excellent biocompatibility. In wound healing experiments, RES-CDs outperformed resveratrol in terms of cell scratch healing, migration, and tube formation. In a rat skin defect model, RES-CDs promoted wound healing and stimulated the formation of blood vessels and tissue regeneration near the wound site, as evidenced by increased CD31 and VEGF expression. Conclusion: Resveratrol-derived CDs with enhanced water solubility show superior performance in tissue healing compared to resveratrol. This discovery opens new possibilities for the clinical application of resveratrol-based carbon dots.


Asunto(s)
Carbono , Puntos Cuánticos , Ratas , Humanos , Animales , Resveratrol/farmacología , Carbono/química , Cicatrización de Heridas , Células Endoteliales de la Vena Umbilical Humana , Agua , Puntos Cuánticos/química
15.
Int J Biol Macromol ; 253(Pt 6): 127149, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778583

RESUMEN

In biomedical engineering, smart materials act as media to communicate physiological signals inspired by environmentally responsive stimuli with outer indicators for timely scrutiny and precise therapy. Various physical and chemical processes are applied in the design of specific smart functions. Hydrogels are polymeric networks consisting of hydrophilic chains and chemical groups and they have contributed their unique features in biomedical application as one of the most used smart materials. Numerous raw materials can form hydrogels, in which cellulose and its derivatives have been extensively exploited in biomedicine due to their high hydrophilicity, availability, renewability, biodegradability, biocompatibility, and multifunctional reactivity. This review collates cellulose-based hydrogels and their extensive applications in the biomedical domain, specifically benefiting from the "SMART" concept in their design, synthesis and device assembly. The first section discusses the physical and chemical crosslinking and electrospinning techniques used in the fabrication of smart cellulose-based hydrogels. The second section describes the performance of these hydrogels, and the final section is a comprehensive discussion of their biomedical applications.


Asunto(s)
Celulosa , Materiales Inteligentes , Celulosa/química , Materiales Biocompatibles/química , Hidrogeles/química , Polímeros
16.
Int J Biol Macromol ; 253(Pt 6): 127405, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37832617

RESUMEN

The construction of biomaterials that can facilitate wound healing is significantly challenging in the medical field, and bacterial infections increase this complexity. In this study, we selected the biomacromolecule carboxymethyl chitosan as a carbon source and citric acid as an auxiliary carbon source. We prepared carbon quantum dots with multicolor luminescence properties and higher quantum yields (QYs) using a facile one-pot hydrothermal method. We characterized them to select carbon dots (CDs) suitable for cell growth. Subsequently, their biocompatibility with L929 cells, antibacterial properties against Staphylococcus aureus, and efficiency in promoting wound healing in vivo were investigated. Our experimental results showed that CDs at an appropriate concentration had excellent bioimaging ability, were suitable for cell growth, and accelerated the healing of infected wounds. We believe these bioactive CDs have great potential in promoting wound healing.


Asunto(s)
Quitosano , Puntos Cuánticos , Luminiscencia , Carbono , Cicatrización de Heridas , Antibacterianos/farmacología
17.
Tissue Eng Regen Med ; 20(7): 1017-1039, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37688748

RESUMEN

BACKGROUND: Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone. METHOD: A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms. RESULTS: Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future. CONCLUSION: Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Celulosa , Ingeniería de Tejidos/métodos , Cartílago
18.
Infect Dis Poverty ; 12(1): 82, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697423

RESUMEN

BACKGROUND: Blastocystis hominis (Bh) is zoonotic parasitic pathogen with a high prevalent globally, causing opportunistic infections and diarrhea disease. Human immunodeficiency virus (HIV) infection disrupts the immune system by depleting CD4+ T lymphocyte (CD4+ T) cell counts, thereby increasing Bh infection risk among persons living with HIV (PLWH). However, the precise association between Bh infection risk and HIV-related biological markers and treatment processes remains poorly understood. Hence, the purpose of the study was to explore the association between Bh infection risk and CD4+ T cell counts, HIV viral load (VL), and duration of interruption in antiviral therapy among PLWH. METHODS: A large-scale multi-center cross-sectional study was conducted in China from June 2020 to December 2022. The genetic presence of Bh in fecal samples was detected by real-time fluorescence quantitative polymerase chain reaction, the CD4+ T cell counts in venous blood was measured using flowcytometry, and the HIV VL in serum was quantified using fluorescence-based instruments. Restricted cubic spline (RCS) was applied to assess the non-linear association between Bh infection risk and CD4+ T cell counts, HIV VL, and duration of interruption in highly active antiretroviral therapy (HARRT). RESULTS: A total of 1245 PLWH were enrolled in the study, the average age of PLWH was 43 years [interquartile range (IQR): 33, 52], with 452 (36.3%) being female, 50.4% (n = 628) had no immunosuppression (CD4+ T cell counts > 500 cells/µl), and 78.1% (n = 972) achieved full virological suppression (HIV VL < 50 copies/ml). Approximately 10.5% (n = 131) of PLWH had interruption. The prevalence of Bh was found to be 4.9% [95% confidence interval (CI): 3.8-6.4%] among PLWH. Significant nonlinear associations were observed between the Bh infection risk and CD4+ T cell counts (Pfor nonlinearity < 0.001, L-shaped), HIV VL (Pfor nonlinearity < 0.001, inverted U-shaped), and duration of interruption in HARRT (Pfor nonlinearity < 0.001, inverted U-shaped). CONCLUSIONS: The study revealed that VL was a better predictor of Bh infection than CD4+ T cell counts. It is crucial to consider the simultaneous surveillance of HIV VL and CD4+ T cell counts in PLWH in the regions with high level of socioeconomic development. The integrated approach can offer more comprehensive and accurate understanding in the aspects of Bh infection and other opportunistic infections, the efficacy of therapeutic drugs, and the assessment of preventive and control strategies.


Asunto(s)
Infecciones por Blastocystis , VIH , Humanos , Femenino , Adulto , Masculino , Infecciones por Blastocystis/complicaciones , Infecciones por Blastocystis/epidemiología , Estudios Transversales , China/epidemiología , Terapia Antirretroviral Altamente Activa
19.
Front Bioeng Biotechnol ; 11: 1226065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37485317

RESUMEN

In recent years, mechanoluminescent (ML) materials have shown great potential in stress sensing, mechanical energy collection and conversion, so they have attracted wide attention in the field of stomatology. In the early stage of this study, BaSi2O2N2:Eu2+ ML phosphors were synthesized by two-step high temperature solid state method, and then mixed with Polydimethylsiloxane (PDMS) in different proportions to obtain BaSi2O2N2:Eu2+/PDMS ML composites with different mass fractions (10%,20%,30%,40%,50%). Then its biosafety was evaluated by Cell Counting Kit-8 (CCK-8), Calcein-AM/PI fluorescence staining, hemolysis, oral mucosal irritation, acute and subacute systemic toxicity tests. The experimental results show that the biosafety of BaSi2O2N2:Eu2+/PDMS ML composite elastomers with different mass fraction is in line with the existing standards, and other related properties can be further studied.

20.
Biomed Mater ; 18(4)2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37321231

RESUMEN

Carbon dots (CDs) are novel zero-dimensional spherical nanoparticles with water solubility, biocompatibility and photoluminescence properties. As the variety of raw materials for CDs synthesis becomes more and more abundant, people tend to choose precursors from nature. Many recent studies have shown that CDs can inherit properties similar to their carbon sources. Chinese herbal medicine has a variety of therapeutic effects to many diseases. In recent years, many literatures have chosen herbal medicine as raw materials, however, how the properties of raw materials affect CDs has not been systematically summarized. The intrinsic bioactivity and potential pharmacological effects of CDs have not received sufficient attention and have become a 'blind spot' for research. In this paper, the main synthesis methods were introduced and the effects of carbon sources from different herbal medicine on the properties of CDs and related applications were reviewed. In addition, we briefly review some of the biosafety assessments of CDs, and make recommendations for biomedical applications. CDs that inherit the therapeutic properties of herbs can enable diagnosis and treatment of clinical diseases, bioimaging, and biosensing in the future.


Asunto(s)
Nanopartículas , Plantas Medicinales , Puntos Cuánticos , Humanos , Carbono , Contención de Riesgos Biológicos , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA