Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Microbiol ; 206(1): 3, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991548

RESUMEN

Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.


Asunto(s)
Dermatitis , Psoriasis , Ratones , Humanos , Animales , Imiquimod/efectos adversos , Imiquimod/metabolismo , Psoriasis/inducido químicamente , Psoriasis/metabolismo , Piel , Queratinocitos/metabolismo , Staphylococcus/genética , Proliferación Celular , Dermatitis/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Proteínas Represoras/metabolismo , Proteínas de Homeodominio/efectos adversos , Proteínas de Homeodominio/metabolismo
2.
Front Pediatr ; 11: 1228257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609361

RESUMEN

Purpose: To evaluate eye use behavior in myopic and non-myopic children objectively using Clouclip M2 device and subjectively using questionnaire and compare the results. The study also aimed to assess the relationships between ocular biometric parameters and refractive status. Methods: Clouclip M2 was used in monitoring eye use behavior and visual environment in children aged 9-11 years. The participants were monitored for 7 days. On the eighth day, data stored in the device were collected, relevant eye examination were conducted and survey questionnaire was administered. The paired sample t-test was used to compare the eye use behavior obtained objectively and subjectively. The relationships between ocular biometric parameters and refractive status were assessed using the Pearson's Correlation analysis. Results: Spherical equivalent refraction was significantly correlated with axial length, axial length to corneal radius, anterior chamber depth, lens thickness, and corneal radius (P < 0.05). The average time per day spent on near work, the maximum time for single near work, and the average near working distance were significantly lower, and the average total time spent on outdoor activities was significantly longer as determined by questionnaire method than that found using Clouclip M2. Logistic regression analysis revealed that prolonged near work, shorter working distance, presence of parental myopia, and lesser outdoor activities were significant risk factors for myopia. Conclusions: The childhood myopia is influenced by eye use behavior, eye use environment, and parental myopia. Results from this study further support that biometric and optical parameters of the eye determine refractive status. Being an objective method, Clouclip M2 provides an independent eye use behavior data which potentially are more reliable than obtained from subjective method. Our study provided a theoretical basis for myopia prevention and control in clinical practice.

3.
ChemMedChem ; 18(16): e202300131, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37226330

RESUMEN

Efficacy of clinical chemotherapeutic agents depends not only on direct cytostatic and cytotoxic effects but also involves in eliciting (re)activation of tumour immune effects. One way to provoke long-lasting antitumour immunity is coined as immunogenic cell death (ICD), exploiting the host immune system against tumour cells as a "second hit". Although metal-based antitumour complexes hold promise as potential chemotherapeutic agents, ruthenium (Ru)-based ICD inducers remain sparse. Herein, we report a half-sandwich complex Ru(II) bearing aryl-bis(imino) acenaphthene chelating ligand with ICD inducing properties for melanoma in vitro and in vivo. Complex Ru(II) displays strong anti-proliferative potency and potential cell migration inhibition against melanoma cell lines. Importantly, complex Ru(II) drives the multiple biochemical hallmarks of ICD in melanoma cells, i. e., the elevated expression of calreticulin (CRT), high mobility group box 1 (HMGB1), Hsp70 and secretion of ATP, followed by the decreased expression of phosphorylation of Stat3. In vivo the inhibition of tumour growth in prophylactic tumour vaccination model further confirms that mice with complex Ru(II)-treated dying cells lead to activate adaptive immune responses and anti-tumour immunity by the activation of ICD in melanoma cells. Mechanisms of action studies show that complex Ru(II)-induced ICD could be associated with mitochondrial damage, ER stress and impairment of metabolic status in melanoma cells. We believe that the half-sandwich complex Ru(II) as an ICD inducer in this work will help to design new half-sandwich Ru-based organometallic complexes with immunomodulatory response in melanoma treatments.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Melanoma , Rutenio , Animales , Ratones , Rutenio/farmacología , Rutenio/química , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Antineoplásicos/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Melanoma/tratamiento farmacológico , Línea Celular Tumoral
4.
Front Oncol ; 11: 738222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868931

RESUMEN

Tamoxifen (TAM) is the most commonly used adjuvant endocrine drug for hormone receptor-positive (HR+) breast cancer patients. However, how to accurately evaluate the risk of breast cancer recurrence and metastasis after adjuvant TAM therapy is still a major concern. In recent years, many studies have shown that the clinical outcomes of TAM-treated breast cancer patients are influenced by the activity of some cytochrome P450 (CYP) enzymes that catalyze the formation of active TAM metabolites like endoxifen and 4-hydroxytamoxifen. In this study, we aimed to first develop and validate an algorithm combining polymorphisms in CYP genes and clinicopathological signatures to identify a subpopulation of breast cancer patients who might benefit most from TAM adjuvant therapy and meanwhile evaluate major risk factors related to TAM resistance. Specifically, a total of 256 patients with invasive breast cancer who received adjuvant endocrine therapy were selected. The genotypes at 10 loci from three TAM metabolism-related CYP genes were detected by time-of-flight mass spectrometry and multiplex long PCR. Combining the 10 loci with nine clinicopathological characteristics, we obtained 19 important features whose association with cancer recurrence was assessed by importance score via random forests. After that, a logistic regression model was trained to calculate TAM risk-of-recurrence score (TAM RORs), which is adopted to assess a patient's risk of recurrence after TAM treatment. The sensitivity and specificity of the model in an independent test cohort were 86.67% and 64.56%, respectively. This study showed that breast cancer patients with high TAM RORs were less sensitive to TAM treatment and manifested more invasive characteristics, whereas those with low TAM RORs were highly sensitive to TAM treatment, and their conditions were stable during the follow-up period. There were some risk factors that had a significant effect on the efficacy of TAM. They were tissue classification (tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e-16), the number of lymph node metastases (Node-Negative vs. Node < 4, p = 5.3e-07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e-15), and the expression levels of estrogen receptor (ER) and progesterone receptor (PR) (ER < 50% vs. ER ≥ 50%, p = 1.3e-12; PR < 50% vs. PR ≥ 50%, p = 2.6e-08). The really remarkable thing is that different genotypes of CYP2D6*10(C188T) show significant differences in prediction function (CYP2D6*10 CC vs. TT, p < 0.019; CYP2D6*10 CT vs. TT, p < 0.037). There are more than 50% Chinese who have CYP2D6*10 mutation. So the genotype of CYP2D6*10(C188T) should be tested before TAM therapy.

5.
Comput Math Methods Med ; 2021: 3656831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956396

RESUMEN

OBJECTIVE: To investigate refractive development and prevalence of myopia in children aged 3-6 years in Hebei Province, China, and to explore the developmental law of refraction, so as to clinically guide the prediction and intervention of myopia. METHODS: In May 2019, a total of 6120 people were inspected in 68 kindergartens in 11 cities in Hebei Province. Child refractive refraction was checked under noncycloplegia using a handheld binocular vision screener (SW-800, SUOER, Tianjin, China). Axial length (AL) and corneal radius of curvature (CR) were measured using an ocular biometry (IOLMaster 500, Carl Zeiss, Germany). Myopia was defined as spherical equivalent (SE) ≤ -0.75 D. RESULTS: A total of 5506 children aged 3-6 years met the criteria and were included in the statistical analysis. The prevalence of myopia was 3.49% (1.93% at age 3, 2.90% at age 4, 3.78% at age 5, and 3.88% at age 6). Overall, the mean SE was +0.67 ± 1.05 D (+0.81 ± 1.00 D at age 3, +0.79 ± 1.05 D at age 4, +0.67 ± 1.08 D at age 5, and +0.13 ± 1.01 D at age 6); the mean CR was 7.76 ± 0.26 mm (7.78 ± 0.26 mm at age3, 7.75 ± 0.25 mm at age 4, 7.77 ± 0.26 mm at age 5, and 7.76 ± 0.25 mm at age 6); the mean AL was 22.31 ± 0.73 mm (21.98 ± 0.63 mm at age 3, 22.12 ± 0.69 mm at age 4, 22.34 ± 0.73 mm at age 5, and 22.49 ± 0.73 mm at age 6). CONCLUSIONS: Prevalence of myopia increases with age in children aged 3-6 years in Hebei, China. With the increase of age, CR is basically stable, and AL increases gradually. AL/CR, which is closely related to SE, can be used as an indicator to predict myopia and guide clinical work.


Asunto(s)
Miopía/epidemiología , Refracción Ocular , Biometría , Niño , Preescolar , China/epidemiología , Biología Computacional , Estudios Transversales , Femenino , Humanos , Masculino , Miopía/etiología , Miopía/prevención & control , Prevalencia , Selección Visual/métodos , Pruebas de Visión/métodos , Pruebas de Visión/estadística & datos numéricos
6.
Int J Biol Macromol ; 125: 544-556, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30537505

RESUMEN

Acquired resistance to chemotherapy is a frequent challenge in cancer care and one of the leading causes for failing breast cancer therapies. There is accumulative clinical and experimental evidence indicating that microRNAs (miRNAs) play a crucial role in developing therapeutic resistance in cancer cells. We aimed to explore key miRNAs and associated mechanisms by which breast cancer develops chemoresistance. In this study, we found that a particular miRNA species, miR-181c, was significantly low-expressed in breast cancer cell line MCF-7 which developed chemoresistance towards doxorubicin (Adriamycin, ADR, subclone renamed as MCF-7/ADR) than in the wild-type MCF-7 cells. Induced overexpression of miR-181c significantly inhibited cell proliferation, reversed the chemoresistance towards doxorubicin, and reduced the growth of resistant breast cancer xenograft tumors in vitro and in vivo. Using a bioinformatics approach, we also identified osteopontin (OPN) as a direct target of miR-181c. In contrast to low miR-181c expression in MCF-7/ADR cells, OPN showed a reversely high expression in resistant MCF-7/ADR cells. Our results suggest that miR-181c may regulate chemosensitivity and chemoresistance by downregulating OPN, resulting in enhanced p53-dependent transactivation and apoptosis in resistant breast cancer cells. This study provides new insights to develop effective interventions for cancer patients with acquired resistance to chemotherapy.


Asunto(s)
Neoplasias de la Mama/genética , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , MicroARNs/genética , Osteopontina/genética , Neoplasias de la Mama/dietoterapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7
7.
Toxicol Appl Pharmacol ; 359: 55-61, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30244121

RESUMEN

Triple negative breast cancer (TNBC) is associated with poor prognosis and systemic chemotherapy is the only treatment for TNBC. However, development of chemo-resistance remains a major obstacle for TNBC treatment. Paclitaxel-resistance is mainly related to the activation of the Akt signaling pathway and deregulation of apoptotic regulatory proteins. LncRNAs are frequently dysregulated in various malignancies, including breast cancer, facilitating cell proliferation, metastasis and drug resistance. LncRNA H19 is overexpressed in approximately 70% of breast cancer patients, and has been reported to confer chemo-resistance in breast cancer. In the present study, we investigated the expression level of lncRNA H19 in paclitaxel-resistant and paclitaxel-sensitive cell lines. The results showed that the level of lncRNA H19 expression in paclitaxel-resistant cells was significantly higher than that in paclitaxel-sensitive cells, and knockdown of lncRNA H19 might restore chemo-sensitivity in paclitaxel-resistant TNBC by mediating the AKT signaling pathway. Thus, lncRNA H19 might be an efficient therapeutic target in paclitaxel-resistant TNBC treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteína Oncogénica v-akt/genética , Paclitaxel/farmacología , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteína Oncogénica v-akt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA