Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Bot ; 107(4): 562-576, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32227348

RESUMEN

PREMISE: Unique among vascular plants, some species of Selaginella have single giant chloroplasts in their epidermal or upper mesophyll cells (monoplastidy, M), varying in structure between species. Structural variants include several forms of bizonoplast with unique dimorphic ultrastructure. Better understanding of these structural variants, their prevalence, environmental correlates and phylogenetic association, has the potential to shed new light on chloroplast biology unavailable from any other plant group. METHODS: The chloroplast ultrastructure of 76 Selaginella species was studied with various microscopic techniques. Environmental data for selected species and subgeneric relationships were compared against chloroplast traits. RESULTS: We delineated five chloroplast categories: ME (monoplastidy in a dorsal epidermal cell), MM (monoplastidy in a mesophyll cell), OL (oligoplastidy), Mu (multiplastidy, present in the most basal species), and RC (reduced or vestigial chloroplasts). Of 44 ME species, 11 have bizonoplasts, cup-shaped (concave upper zone) or bilobed (basal hinge, a new discovery), with upper zones of parallel thylakoid membranes varying subtly between species. Monoplastidy, found in 49 species, is strongly shade associated. Bizonoplasts are only known in deep-shade species (<2.1% full sunlight) of subgenus Stachygynandrum but in both the Old and New Worlds. CONCLUSIONS: Multiplastidic chloroplasts are most likely basal, implying that monoplastidy and bizonoplasts are derived traits, with monoplastidy evolving at least twice, potentially as an adaptation to low light. Although there is insufficient information to understand the adaptive significance of the numerous structural variants, they are unmatched in the vascular plants, suggesting unusual evolutionary flexibility in this ancient plant genus.


Asunto(s)
Selaginellaceae , Tracheophyta , Evolución Biológica , Cloroplastos , Filogenia , Hojas de la Planta
2.
Proc Natl Acad Sci U S A ; 116(8): 3091-3099, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718437

RESUMEN

Time-series transcriptomes of a biological process obtained under different conditions are useful for identifying the regulators of the process and their regulatory networks. However, such data are 3D (gene expression, time, and condition), and there is currently no method that can deal with their full complexity. Here, we developed a method that avoids time-point alignment and normalization between conditions. We applied it to analyze time-series transcriptomes of developing maize leaves under light-dark cycles and under total darkness and obtained eight time-ordered gene coexpression networks (TO-GCNs), which can be used to predict upstream regulators of any genes in the GCNs. One of the eight TO-GCNs is light-independent and likely includes all genes involved in the development of Kranz anatomy, which is a structure crucial for the high efficiency of photosynthesis in C4 plants. Using this TO-GCN, we predicted and experimentally validated a regulatory cascade upstream of SHORTROOT1, a key Kranz anatomy regulator. Moreover, we applied the method to compare transcriptomes from maize and rice leaf segments and identified regulators of maize C4 enzyme genes and RUBISCO SMALL SUBUNIT2 Our study provides not only a powerful method but also novel insights into the regulatory networks underlying Kranz anatomy development and C4 photosynthesis.


Asunto(s)
Redes Reguladoras de Genes/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Fotoperiodo , Proteínas de Plantas , Ribulosa-Bifosfato Carboxilasa/genética , Zea mays/genética
3.
Proc Natl Acad Sci U S A ; 114(33): E6884-E6891, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28761000

RESUMEN

High vein density, a distinctive trait of C4 leaves, is central to both C3-to-C4 evolution and conversion of C3 to C4-like crops. We tested the hypothesis that high vein density in C4 leaves is due to elevated auxin biosynthesis and transport in developing leaves. Up-regulation of genes in auxin biosynthesis pathways and higher auxin content were found in developing C4 leaves compared with developing C3 leaves. The same observation held for maize foliar (C4) and husk (C3) leaf primordia. Moreover, auxin content and vein density were increased in loss-of-function mutants of Arabidopsis MYC2, a suppressor of auxin biosynthesis. Treatment with an auxin biosynthesis inhibitor or an auxin transport inhibitor led to much fewer veins in new leaves. Finally, both Arabidopsis thaliana auxin efflux transporter pin1 and influx transporter lax2 mutants showed reduced vein numbers. Thus, development of high leaf vein density requires elevated auxin biosynthesis and transport.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico/genética , Vías Biosintéticas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Desarrollo de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/metabolismo , Especificidad de la Especie , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
4.
Am J Bot ; 102(4): 500-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25878084

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Chloroplast development and structure are highly conserved in vascular plants, but the bizonoplast of Selaginella is a notable exception. In the shade plant S. erythropus, each dorsal epidermal cell contains one bizonoplast, while other cells have normal chloroplasts. Our quest was to (1) determine the origin of bizonoplasts, (2) explore developmental plasticity, and (3) correlate developmental changes with photosynthetic activity to provide insights unavailable in other green plants with more constrained development.• METHODS: Bizonoplast development was studied in juvenile prostrate and older erect shoots of S. erythropus. Plastid plasticity was studied in plants cultivated under different light conditions. Chlorophyll fluorescence was measured and correlated with photosynthetic activity.• KEY RESULTS: The bizonoplast originates from a proplastid, forming a distinctive upper zone rapidly after exposure to low light. In the prostrate shoots, the proplastid develops through early stages only. When the shoot becomes erect, the proplastid soon develops into a mature bizonoplast. Erect shoots have significantly higher photosynthetic efficiency than prostrate shoots. No bizonoplasts were found in the plants growing in high light, where 2-4 spheroidal chloroplasts formed, or with light from below.• CONCLUSIONS: The upper zone develops above a normal-looking chloroplast structure to produce a bizonoplast. Bizonoplast developmental plasticity suggests that regular lamellar structure and monoplastidy are adaptations to deep shade environments. Such novel variation in S. erythropus is in stark contrast to known plastid development in other vascular plants, possibly reflecting retention of developmental flexibility in the basal clade, Lycophyta, to which it belongs.


Asunto(s)
Cloroplastos/metabolismo , Fotosíntesis , Selaginellaceae/metabolismo , Adaptación Fisiológica , Luz , Selaginellaceae/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA