Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
2.
Small ; : e2402314, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708815

RESUMEN

Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.

3.
Comput Struct Biotechnol J ; 23: 1477-1488, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38623562

RESUMEN

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 µM) and ST132 (KD = 14.5 ± 0.1 µM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal ß-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.

4.
Angew Chem Int Ed Engl ; 63(25): e202404732, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38605561

RESUMEN

The catalytic access of silicon-stereogenic organosilanes remains a big challenge, and largely depends on the desymmetrization of the symmetric precursors with two identical substitutes attached to silicon atom. Here we report the construction of silicon-stereogenic organosilanes via catalytic kinetic resolution of racemic monohydrosilanes with good to excellent selectivity factors. Both Si-stereogenic dihydrobenzosiloles and Si-stereogenic monohydrosilanes could be efficiently accessed in one single operation via Rh-catalyzed enantioselective intramolecular hydrosilylation, employing (R,R)-Et-DuPhos as the optimal ligand. This catalytic protocol features mild conditions, a low catalyst loading (0.1 mol % [Rh(cod)Cl]2), high stereoinduction (S factor up to 152), and excellent scalability. Moreover, further derivatizations led to the efficient synthesis of uncommon middle-size (7- and 8-membered) Si-stereogenic silacycles. Preliminary mechanistic study indicates this reaction might undergo a modified Chalk-Harrod mechanism.

5.
Org Lett ; 26(18): 3691-3696, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38662519

RESUMEN

O-Acylhydroxylamine has been widely employed as an electrophilic amination reagent in transition-metal-catalyzed C-N coupling reactions, but its use as an electrophilic oxygen source has not been disclosed. Here, we report a Pd-catalyzed 1,2-oxyarylation of alkenes with O-acylhydroxylamines as an oxidant and an oxygen source for the first time. With simple amide as the monodentate directing group, this method features a broad substrate scope, good functional group tolerance, and mild conditions.

6.
Virus Res ; 344: 199359, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38521505

RESUMEN

The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , ADN Polimerasa Dirigida por ADN , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/química , Animales , Antivirales/farmacología , Antivirales/química , Fiebre Porcina Africana/virología , Porcinos , Descubrimiento de Drogas , Replicación Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Unión Proteica , Simulación del Acoplamiento Molecular , ADN Viral/genética , Farmacóforo
7.
Angew Chem Int Ed Engl ; 63(20): e202402612, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38410071

RESUMEN

The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.

8.
Light Sci Appl ; 13(1): 51, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374124

RESUMEN

Harnessing optical supermode interaction to construct artificial photonic molecules has uncovered a series of fundamental optical phenomena analogous to atomic physics. Previously, the distinct energy levels and interactions in such two-level systems were provided by coupled microresonators. The reconfigurability is limited, as they often require delicate external field stimuli or mechanically altering the geometric factors. These highly specific approaches also limit potential applications. Here, we propose a versatile on-chip photonic molecule in a multimode microring, utilizing a flexible regulation methodology to dynamically control the existence and interaction strength of spatial modes. The transition between single/multi-mode states enables the "switched-off/on" functionality of the photonic molecule, supporting wider generalized applications scenarios. In particular, "switched-on" state shows flexible and multidimensional mode splitting control in aspects of both coupling strength and phase difference, equivalent to the a.c. and d.c. Stark effect. "Switched-off" state allows for perfect low-loss single-mode transition (Qi ~ 10 million) under an ultra-compact bend size (FSR ~ 115 GHz) in a foundry-based silicon microring. It breaks the stereotyped image of the FSR-Q factor trade-off, enabling ultra-wideband and high-resolution millimeter-wave photonic operations. Our demonstration provides a flexible and portable solution for the integrated photonic molecule system, extending its research scope from fundamental physics to real-world applications such as nonlinear optical signal processing and sixth-generation wireless communication.

9.
Am J Intellect Dev Disabil ; 129(2): 151-168, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411244

RESUMEN

Using National Longitudinal Transition Study 2012 data, this study explored parent and youth expectations in the areas of postsecondary education, employment, independent living, and financial independence. Compared to youth with other disabilities, youth with intellectual and developmental disabilities and their parents had much lower expectations for the four postschool goals, and parent expectations were much lower than youth's own expectations. Also, youth's race, along with their daily living skills and functional abilities, were positively associated with parent and youth expectations in several future goal areas. Our discussion highlights implications for improving the transition experiences of youth with intellectual and developmental disabilities.


Asunto(s)
Discapacidad Intelectual , Motivación , Niño , Humanos , Adolescente , Objetivos , Discapacidades del Desarrollo , Padres , Empleo
10.
Water Res ; 252: 121230, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330714

RESUMEN

Although the biotoxicity of heavy metals has been widely studied, there are few reports on the recovery strategy of the inhibited bio-system. This study proposed a combined promoter-I (Primary promoter: l-cysteine, biotin, and cytokinin + Electron-shuttle: PMo12) to recover the denitrification suppressed by Cr(VI). Compared with self-recovery, combined promoter-I shortened the recovery time of 28 cycles, and the recovered reactor possessed more stable long-term operation performance with >95 % nitrogen removal. The biomass increased by 7.07 mg VSS/(cm3 carrier) than self-recovery due to the promoted bacterial reproduction, thereby reducing the toxicity load of chromium per unit biomass. The combined promoter-I strengthened the toxicity remediation by promoting 92.84 % of the intracellular chromium release and rapidly activating anti-oxidative stress response. During toxicity remediation, ROS content quickly decreased, and the PN/PS value was 2.27 times that of self-recovery. PMo12 relieved Cr(VI) inhibition on NO3--N reduction by increasing NAR activity. The enhanced intracellular and intercellular electron transmission benefited from the stimulated NADH, FMN, and Cyt.c secretion by the primary promoter and the improved transmembrane electron transmission by Mo. PMo12 and the primary promoter synergized in regulating community structure and improving microbial richness. This study provided practical approaches for microbial toxicity remediation and maintaining high-efficiency denitrification.


Asunto(s)
Desnitrificación , Metales Pesados , Electrones , Cromo/toxicidad , Cromo/química
11.
Chem Commun (Camb) ; 60(11): 1488-1491, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224189

RESUMEN

A cyclic trinuclear complex is synthesized from AgI and 1H-pyrazole-4-carbaldehyde. Reticulation of the complex with 1,3,5-tris(4-aminophenyl)benzene through Schiff-base reaction affords a porous FDM-72 framework. Amine choice is systematically investigated as it may initiate metal reduction. This study proposes a new route and its amine selection criterion to synthesize Ag-based frameworks.

12.
Angew Chem Int Ed Engl ; 63(1): e202313336, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983653

RESUMEN

The precise control of the regioselectivity in the transition metal-catalyzed migratory hydrofunctionalization of alkenes remains a big challenge. With a transient ketimine directing group, the nickel-catalyzed migratory ß-selective hydroarylation and hydroalkenylation of alkenyl ketones has been realized with aryl boronic acids using alkyl halide as the mild hydride source for the first time. The key to this success is the use of a diphosphine ligand, which is capable of the generation of a Ni(II)-H species in the presence of alkyl bromide, and enabling the efficient migratory insertion of alkene into Ni(II)-H species and the sequent rapid chain walking process. The present approach diminishes organosilanes reductant, tolerates a wide array of complex functionalities with excellent regioselective control. Moreover, this catalytic system could also be applied to the migratory hydroarylation of alkenyl azahetereoarenes, thus providing a general approach for the preparation of 1,2-aryl heteroaryl motifs with wide potential applications in pharmaceutical discovery.

13.
Asian J Surg ; 47(2): 1285-1286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040512

Asunto(s)
Huevos , Neoplasias , Humanos
14.
J Am Chem Soc ; 145(48): 26169-26178, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988478

RESUMEN

Imaging-guided chemodynamic therapy is widely considered a promising modality for personalized and precision cancer treatment. Combining both imaging and chemodynamic functions in one system conventionally relies on the hybrid materials approach. However, the heterogeneous, ill-defined, and dissociative/disintegrative nature of the composites tends to complicate their action proceedings in biological environments and thus makes the treatment imprecise and ineffective. Herein, a strategy to employ two kinds of inorganic units with different functions─reactive oxygen species generation and characteristic emission─has achieved two single-crystalline metal-organic frameworks (MOFs), demonstrating the competency of reticular chemistry in creating multifunctional materials with atomic precision. The multinary MOFs could not only catalyze the transformation from H2O2 to hydroxyl radicals by utilizing the redox-active Cu-based units but also emit characteristic tissue-penetrating near-infrared luminescence brought by the Yb4 clusters in the scaffolds. Dual functions of MOF nanoparticles are further evidenced by pronounced cell imaging signals, elevated intracellular reactive oxygen species levels, significant cell apoptosis, and reduced cell viabilities when they are taken up by the HeLa cells. In vivo NIR imaging is demonstrated after the MOF nanoparticles are further functionalized. The independent yet interconnected modules in the intact MOFs could operate concurrently at the same cellular site, achieving a high spatiotemporal consistency. Overall, our work suggests a new method to effectively accommodate both imaging and therapy functions in one well-defined material for precise treatment.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Humanos , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Células HeLa , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Fototerapia , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
15.
J Sports Sci ; 41(14): 1383-1392, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37885067

RESUMEN

The importance of coach leadership to athlete development and performance has been identified in the literature. We respond to the call to investigate antecedents of coach transformational leadership and their indirect effects on athlete outcomes. We propose that coach extraversion as an antecedent of coach transformational leadership can indirectly impact follower cohesion and satisfaction. Building on this mediation model, we assert that educational environment (i.e., high school and university) may serve as a first-stage moderator between coach extraversion and transformational leadership. We used 48 coaches and their 570 athletes from competitive high school and university basketball teams to test this moderated mediation model. Our results indicate that coach extraversion indirectly impacts athlete cohesion and satisfaction via transformational leadership. Moreover, the indirect effects of coach extraversion on athlete outcomes via coach transformational leadership is conditionally significant only when coaches and athletes are in universities but not in high schools. Our findings highlight the importance of educational environment in determining the association between coach personality and leadership perception. Implications for research and practice are discussed.


Asunto(s)
Extraversión Psicológica , Liderazgo , Humanos , Motivación , Atletas , Personalidad
16.
BMC Neurosci ; 24(1): 53, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845642

RESUMEN

Increasingly, non-pharmacological interventions are being identified and applied to post-stroke dysphagia. Nevertheless, there is insufficient evidence to assess which type of interventions are more effective. In this study, the randomized controlled trials of non-pharmacological interventions on post-stroke dysphagia were retrieved from the relevant databases. Including 96 studies and 12 non-drug treatments. Then, and the network meta-analysis is carried out by statistical software. The results show: In the aspects of videofluoroscopic swallowing study (VFSS), Standardized Swallowing Assessment (SSA), swallowing-quality of life (SWAL-QOL), Water swallow test (WST); Acupuncture + electrotherapy + rehabilitation training, acupuncture + rehabilitation training + massage, electrotherapy + rehabilitation training, acupuncture + electrotherapy + rehabilitation training, electrotherapy, acupuncture + rehabilitation training + acupoints sticking application have significant effects in post-stroke dysphagia. Compared with other interventions, they have more advantages in improving the above indicators. A substantial number of high-quality randomized clinical trials are still necessary in the prospective to validate the therapeutic effectiveness of non-pharmacological interventions in post-stroke dysphagia and the results of this Bayesian network meta-analysis.


Asunto(s)
Terapia por Acupuntura , Trastornos de Deglución , Accidente Cerebrovascular , Humanos , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Calidad de Vida , Estudios Prospectivos , Teorema de Bayes , Metaanálisis en Red , Resultado del Tratamiento , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Terapia por Acupuntura/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Sci Total Environ ; 903: 166626, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643709

RESUMEN

The formation of biofilm determines the performance and stability of biofilm system. Increasing the hydrophilicity of the carrier surface could efficiently accelerate the attachment and growth of microorganisms. Here, the surface of polypropylene (PP) fiber carrier was modified with polydopamine (PDA) and calcium (Ca(II)) to enhance microbial attachment and toxicity resistance. The results of surface characteristic confirmed the self-polymerization of PDA and the chelation mechanism of Ca(II). Subsequently, the biofilm formation experiments were conducted in sequencing batch biofilm reactors using both normal and chromium-containing wastewater. The biofilm on the surface of the modified carrier exhibited better nitrogen removal and Cr(VI) reduction ability. The biomass of the modified carrier was significantly increased, and the maximum microbial attachment amounts in normal wastewater and chrome-containing wastewater were 1153.34 and 511.78 mg/g carrier, respectively. Furthermore, the confocal laser scanning microscope (CLSM) indicated that the modified carrier coated with PDA and Ca(II) were both biocompatible, and the cell activity was significantly increased. 16S rRNA sequencing results showed that the modified carrier efficiently enriched both denitrification bacteria (Thauera and Flavobacterium) and chrome-reducing bacteria (Simplicispira and Arenimonas) to improve system stability and Cr(VI) resistance. Microbial phenotype prediction based on BugBase analysis further verified the enrichment effect of modified carriers on microorganisms responsible for biofilm formation and oxidative stress resistance. Overall, this work proposed a novel functional carrier that could provide references for advancing the application of biofilm systems in wastewater treatment.

18.
Biotechnol Adv ; 69: 108243, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647974

RESUMEN

3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.


Asunto(s)
Bioimpresión , Humanos , Bioimpresión/métodos , Ingeniería de Tejidos , Impresión Tridimensional , Biopelículas , Catálisis , Materiales Biocompatibles , Andamios del Tejido
19.
Angew Chem Int Ed Engl ; 62(35): e202304573, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37431727

RESUMEN

The use of molecular oxygen as the terminal oxidant in transition metal catalyzed oxidative process is an appealing and challenging task in organic synthetic chemistry. Here, we report a Ni-catalyzed hydroxylarylation of unactivated alkenes enabled by a ß-diketone ligand with high efficiency and excellent regioselectivity employing molecular oxygen as the oxidant and hydroxyl source. This reaction features mild conditions, broad substrate scope and incredible heterocycle compatibility, providing a variety of ß-hydroxylamides, γ-hydroxylamides, ß-aminoalcohols, γ-aminoalcohols, and 1,3-diols in high yields. The synthetic value of this methodology was demonstrated by the efficient synthesis of two bioactive compounds, (±)-3'-methoxyl citreochlorol and tea catechin metabolites M4.

20.
ACS Appl Mater Interfaces ; 15(26): 31354-31363, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37341609

RESUMEN

Generating structural vacancies in metal-organic frameworks (MOFs) by partially removing the inorganic and organic units from the scaffolds is an effective strategy to modulate the pore parameters of the extended structures. However, pore enlargement is accomplished at the cost of loss in the number of active sites in typical MOFs, since dissociations of coordination linkages to create vacancies are not site-selective. Here, we performed site-specific vacancy generation in a multinary MOF (FDM-6) by selectively hydrolyzing the weak Zn─carboxylate linkages and keeping the strong Cu─pyrazolate linkages untouched. Surface area and pore size range of the materials could be systematically tuned by adjusting the water content and hydrolysis time. More than 56% of the Zn(II) sites in FDM-6 could be vacant, as evidenced by the atom occupancy analysis using powder X-ray diffraction, while most of the redox-active Cu sites are held in the backbone. The vacancies create highly connected mesopores, thus guaranteeing facile transportation of the guest molecules toward the active sites. Compared with the pristine MOF, FDM-6 with site-selective vacancies shows enhanced catalytic activity in bulky aromatic alcohol oxidation. Overall, the multinary MOF provides a platform in which both pore size enhancement and full retainment of active sites could be delivered in one framework by simple vacancy engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA