Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965548

RESUMEN

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/genética , Animales , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Terapia Molecular Dirigida
2.
Chin Med J (Engl) ; 137(11): 1271-1284, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738689

RESUMEN

ABSTRACT: In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.


Asunto(s)
Carcinoma Hepatocelular , Metabolismo de los Lípidos , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Metabolismo de los Lípidos/fisiología , Microambiente Tumoral , Metástasis de la Neoplasia
3.
Biomark Res ; 12(1): 21, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321558

RESUMEN

Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.

4.
Cell Death Discov ; 10(1): 67, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38331879

RESUMEN

The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA