Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Environ Manage ; 300: 113744, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34536738

RESUMEN

This study aimed at establishing the spatial and seasonal distribution patterns of dissolved metals, and assessing the water quality and potential human health risk, in rivers of Lake Chaohu Basin (LCB, China). Four seasonal samplings were conducted at 83 sites from April to December in 2018. The water quality was assessed using heavy metal evaluation index (HEI), while hazard index (HI) and carcinogenic risks indicated potential human risk, according to 12 metals (Cr, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, and Pb). Spatially, sites were effectively classified into Group I and II using cluster analysis. Generally, dissolved metals were low in rivers of LCB at whole basin scale. Total metals concentrations, as well as HEI and HI, were significantly higher in Group II compared with Group I. The mean total concentration was 496.38 µg L-1, with the highest mean of Zn (233.39 µg L-1), followed by Ba (170.66 µg L-1). The pollution status was generally classified as "slightly affected" by HEI, with a mean of 1.51. According to HI, there were 6.02% and 10.84% of all the 83 sites (main in Nanfei River) with greater chances of harmful health risks for adults and children, respectively. Furthermore, a high risk was observed of Cr, As, and Ni, which was listed in the decreasing order. Although the dissolved metals were relatively low, the potential risk for human health still existed in rivers of LCB, which the local manager should pay more attention to in future.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adulto , Niño , China , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Lagos , Metales Pesados/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua
2.
BMC Microbiol ; 21(1): 179, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34126927

RESUMEN

BACKGROUND: Bacterial community play a key role in environmental and ecological processes in river ecosystems. Rivers are used as receiving body for treated and untreated urban wastewaters that brings high loads of sewage and excrement bacteria. However, little is known about the bacterial community structure and functional files in the rivers around the eutrophic Chaohu Lake, the fifth largest freshwater lake in China, has been subjected to severe eutrophication and cyanobacterial blooms over the past few decades. Therefore, understanding the taxonomic and functional compositions of bacterial communities in the river will contribute to understanding aquatic microbial ecology. The main aims were to (1) examine the structure of bacterial communities and functional profiles in this system; (2) find the environmental factors of bacterial community variations. RESULTS: We studied 88 sites at rivers in the Chaohu Lake basin, and determined bacterial communities using Illumina Miseq sequencing of the 16 S rRNA gene, and predicted functional profiles using PICRUSt2. A total of 3,390,497 bacterial 16 S rRNA gene sequences were obtained, representing 17 phyla, and 424 genera; The dominant phyla present in all samples were Bacteroidetes (1.4-82.50 %), followed by Proteobacteria (12.6-97.30 %), Actinobacteria (0.1-17.20 %). Flavobacterium was the most numerous genera, and accounted for 0.12-80.34 % of assigned 16 S reads, followed by Acinetobacter (0.33-49.28 %). Other dominant bacterial genera including Massilia (0.06-25.40 %), Psychrobacter (0-36.23 %), Chryseobacterium (0.01-22.86 %), Brevundimonas (0.01-12.82 %), Pseudomonas (0-59.73 %), Duganella (0.08-23.37 %), Unidentified Micrococcaceae (0-8.49 %). The functional profiles of the bacterial populations indicated an relation with many human diseases, including infectious diseases. Overall results, using the ß diversity measures, coupled with heatmap and RDA showed that there were spatial variations in the bacterial community composition at river sites, and Chemical oxygen demand (CODMn) and (NH4+ )were the dominant environmental drivers affecting the bacterial community variance. CONCLUSIONS: The high proportion of the opportunistic pathogens (Acinetobacter, Massilia, Brevundimonas) indicated that the discharge of sewage without adequate treatment into the rivers around Chaohu Lake. We propose that these bacteria could be more effective bioindicators for long-term sewage monitoring in eutrophic lakes.


Asunto(s)
Bacterias/aislamiento & purificación , Lagos/microbiología , Microbiota , Ríos/microbiología , Bacterias/clasificación , Bacterias/genética , China , Ecosistema , Monitoreo del Ambiente , Eutrofización , Aguas del Alcantarillado/microbiología
3.
Environ Sci Pollut Res Int ; 28(17): 21779-21788, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411272

RESUMEN

Lanthanum-modified bentonite (LMB) is widely used for eutrophication control and has demonstrated good efficiency in some eutrophic lakes. However, the efficiency of LMB on eutrophication control in some eutrophic lakes, where the structure of food webs is mainly dominated by omni-benthivorous fish, remains ambiguous. Omni-benthivorous fish usually disturbs sediment and promotes the release of internal nutrients, the effect of which on the efficacy of LMB remains to be studied. Thus, a 30-day mesocosm experiment was conducted to determine whether omni-benthivorous fish disturbance and LMB would cause antagonistic responses. LMB significantly reduced dissolved P concentration in overlying water, converting mobile P to bound P in the surface layer of sediment in the absence of crucian carp (Carassius carassius). However, there were significantly negative interaction effects between LMB and crucian carp. Although LMB still effectively reduced the total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) concentrations of overlying water in the presence of crucian carp, it had limited efficacy on inhibiting the increased concentrations of suspended solids, particulate nutrients, and chlorophyll a (Chl a) due to crucian carp disturbance. Furthermore, the crucian carp disturbance also increased the risk of mobile P releasing from surface sediment, whether with or without LMB application. The results indicated that the efficacy of LMB was insufficient to offset the negative effect of omni-benthivorous fish disturbance on eutrophication control. Hence, the omni-benthivorous fish also need to be considered for eutrophication control in shallow eutrophic lakes. Some measures need to be taken to control the biomass of omni-benthivorous fish.


Asunto(s)
Bentonita , Carpas , Animales , Clorofila A , Eutrofización , Lagos , Lantano , Fósforo
4.
Sci Total Environ ; 658: 395-404, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30579197

RESUMEN

Our study illustrated the ecological conditions in the rivers of Lake Taihu Basin (LTB) using an index of biotic integrity based on phytoplankton (P-IBI), and its performance was compared with the previously developed water quality index (WQI). Samples were collected seasonally at 96 sites covering the major rivers from September 2014 to January 2016. Three critical ecological indices, i.e., phytoplankton density, chlorophyll a (chl a), and Menhinick, were selected from a pool of 22 candidate indices mainly according to the correlations among indices and environmental parameters. The results indicated that the ecological status of LTB based on P-IBI was significantly different at spatial (especially between Tiaoxi and the other 5 river systems) and seasonal scales. Furthermore, the proposed P-IBI effectively identified the major environmental parameters (total nitrogen, ammonium, total phosphorus, and permanganate index) associated with each level (bad, low, and moderate). Moreover, the P-IBI was closely and positively correlated with the WQI at the spatial scale regardless of season. However, the ecological conditions were significantly worse according to the P-IBI at both the spatial (P < 0.001) and seasonal scales (P values of 0.018 in winter and < 0.001 in other seasons, respectively), and the seasonal distribution pattern differed between the two methods. Our study suggests that the P-IBI provides an essential supplement for the assessment of ecological conditions of rivers and that the selected critical indices (phytoplankton density, chl a, and Menhinick) are suitable for river ecosystems. Additionally, compared with WQI, the water quality condition was generally worse when using P-IBI, and this phenomenon requires further attention during water quality assessments, as well as different seasonal distribution patterns.


Asunto(s)
Monitoreo del Ambiente/métodos , Fitoplancton/fisiología , Ríos/química , Calidad del Agua , China , Clorofila A/análisis , Fitoplancton/crecimiento & desarrollo , Densidad de Población , Estaciones del Año
5.
Artículo en Inglés | MEDLINE | ID: mdl-30366408

RESUMEN

Spatial and seasonal variations of particulate phosphorus (PP) in a large shallow, eutrophic Lake Taihu with different ecotypes (including a phytoplankton-dominated zone, lake center zone, estuary zone and macrophyte-dominated zone) were investigated. The results showed that particulate organic phosphorus (POP) was the dominant form of PP (>88.0%). The concentration of POP showed higher levels in the bloom-sensitive northwestern zone (phytoplankton-dominated zone and estuary zone) during warm seasons, phytoplankton blooms and input of exogenous particulate matter were the main sources of POP in the lake water. Based on 31P nuclear magnetic resonance (31P NMR) analysis, orthophosphate (Ortho-P) was the dominant molecular species of PP and positively correlated with soluble reactive phosphorus (SRP) (p < 0.01). This suggested that the release of Ortho-P from suspended particulate matter (SPM) was the main source of SRP in the lake water. Pyrophosphate (Pyro-P), which is regarded as a highly labile species of P compounds, represented a large fraction of PP, and its significant positive correlations with chlorophyll a (Chl a), indicated that the concentration of Pyro-P could be used as an important indicator for the degree of eutrophication of Lake Taihu. These results proved that PP in lake water was a significant factor supporting lake eutrophication and must be controlled.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos/química , Fósforo/análisis , Fitoplancton/fisiología , Contaminantes Químicos del Agua/análisis , China , Ecosistema , Material Particulado/análisis , Análisis Espacio-Temporal
6.
Sci Total Environ ; 612: 914-922, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28886543

RESUMEN

Lake Taihu Basin, one of the most developed regions in China, has received considerable attention due to its severe pollution. Our study provides a clear understanding of the water quality in the rivers of Lake Taihu Basin based on basin-scale monitoring and a water quality index (WQI) method. From September 2014 to January 2016, four samplings across four seasons were conducted at 96 sites along main rivers. Fifteen parameters, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity (tur), permanganate index (CODMn), total nitrogen, total phosphorus, ammonium (NH4-N), nitrite, nitrate (NO3-N), calcium, magnesium, chloride, and sulfate, were measured to calculate the WQI. The average WQI value during our study period was 59.33; consequently, the water quality was considered as generally "moderate". Significant differences in WQI values were detected among the 6 river systems, with better water quality in the Tiaoxi and Nanhe systems. The water quality presented distinct seasonal variation, with the highest WQI values in autumn, followed by spring and summer, and the lowest values in winter. The minimum WQI (WQImin), which was developed based on a stepwise linear regression analysis, consisted of five parameters: NH4-N, CODMn, NO3-N, DO, and tur. The model exhibited excellent performance in representing the water quality in Lake Taihu Basin, especially when weights were fully considered. Our results are beneficial for water quality management and could be used for rapid and low-cost water quality evaluation in Lake Taihu Basin. Additionally, we suggest that weights of environmental parameters should be fully considered in water quality assessments when using the WQImin method.

7.
Sci Rep ; 7(1): 17999, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269834

RESUMEN

Twenty-four samplings were conducted every 3 months at 15 sites from January 2009 to October 2014 in Lake Poyang, and 20 parameters were analyzed and classified into three groups (toxic metals, easily treated parameters, and others). The assessment results based on water quality index (WQI) showed that the water quality in Lake Poyang was generally "moderate", according to the classification of the surface water quality standard (GB3838-2002) in China, but a deteriorating trend was observed at the interannual scale. Seasonally, the water quality was best in summer and worst in winter. Easily treated parameters generally determined the WQI value in the assessment, especially total nitrogen (TN) and total phosphorus (TP), while toxic metals and other parameters in Lake Poyang were generally at low and safe levels for drinking water. Water level (WL) has a net positive effect on water quality in Lake Poyang through dilution of environmental parameters, which in practice means TN. Consequently, local management agencies should pay more attention to nutrient concentrations during the monitoring schedule, as well as during the low-water periods which manifest a relatively bad water quality state, especially with the prevailing low WL observed recently in Lake Poyang.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA