Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Eur J Mass Spectrom (Chichester) ; 16(3): 379-88, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20530843

RESUMEN

Tetra-alkoxysilanes are common and useful reagents in sol-gel processes and understanding their reactivity is important in the design of new materials. The mechanism of gas-phase reactions that mimic alcoholyis of Si(OMe)(4) (usually known as TMOS) under acidic conditions have been studied by Fourier transform ion cyclotron resonance techniques and density functional calculations at the B3LYP/6-311+G(d,p) level. The proton affinity of TMOS has been estimated at 836.4 kJ mol(-1) and protonation of TMOS gives rise to an ionic species that is best represented as trimethoxysilyl cations associated with a methanol molecule. Protonated TMOS undergoes rapid and sequential substitution of the methoxy groups in the gas-phase upon reaction with alcohols. The calculated energy profile of the reaction indicates that the substitution reaction through an S(N)2 type mechanism may be more favorable than frontal attack at silicon. Furthermore, the sequential substitution reactions are promoted by a mechanism that involves proton shuttle from the most favorable protonation site to the oxygen of the departing group mediated by the neutral reagent molecule.

3.
Artículo en Inglés | MEDLINE | ID: mdl-12939480

RESUMEN

Gas-phase [C, H(3), S](+) ions obtained by electron impact from (CH(3))(2)S at 14 eV undergo two distinct low-pressure ion-molecule reactions with the parent neutral: proton transfer and charge exchange. The kinetics of these reactions studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques clearly suggests the [C, H(3), S](+) species to be a mixture of isomeric ions. While proton transfer is consistent with reagent ions displaying the CH(2)SH(+) connectivity, the observed charge exchange strongly argues for the presence of thiomethoxy cations, CH(3)S(+), predicted to be stable only in the triplet state. Charge exchange reactions are also observed in the reaction of these same [C, H(3), S](+) ions with benzene, toluene and phenetole. For these substrates, the CH(2)SH(+) ions can promote proton transfer and electrophilic methylene insertion in the aromatic ring with elimination of H(2)S. The results obtained for the different substrates suggest that the fraction of long-lived fraction of thiomethoxy cations obtained at 14 eV by electron ionization of dimethyl sulfide amounts to ~(22 -/+ 4)% of the [C, H(3), S](+) fragments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA