Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nutrients ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794681

RESUMEN

Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.


Asunto(s)
Adipogénesis , Licopeno , Células Madre Mesenquimatosas , Osteogénesis , Transducción de Señal , Animales , Femenino , Ratas , Adipogénesis/efectos de los fármacos , Antioxidantes/farmacología , Proteína Forkhead Box O1/metabolismo , Licopeno/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/prevención & control , Ovariectomía , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Acupunct Meridian Stud ; 15(5): 281-299, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521826

RESUMEN

Acupuncture has gained growing attention in the management of osteoporosis (OP). However, a comprehensive review has not yet been conducted on the efficacy and challenges of acupuncture in preliminary research and clinical trials. Therefore, an extensive literature search was conducted using electronic databases, including PubMed (www.ncbi.nlm.nih.gov/pubmed), CNKI (www.cnki.net), and Web of Science, for studies published from the beginning of 2000 to the end of May 2022. Combinations of synonyms for OP, acupuncture, traditional Chinese medicine, clinical trial, preclinical study, and animal experiments were searched. A total of 290 papers were consulted, including 115 reviews, 109 clinical observations, and 66 preclinical studies. There is accumulating evidence to support the beneficial role of acupuncture in preserving bone quality and relieving clinical symptoms based on clinical and preclinical investigations. The top ten most commonly used acupoints are BL23, ST36, BL20, BL11, CV4, GV4, SP 6, KI3, BL18, and GB39. The underlying mechanisms behind the benefits of acupuncture may be linked with the regulation of the hypothalamic-pituitary-gonadal (adrenal) axis and activation of the Wnt/ß-catenin and OPG/RANKL/RANK signaling pathways. In summary, strong evidence may still come from prospective and well-designed clinical trials to shed light on the potential role of acupuncture in preserving bone loss. Future investigations are needed to explore the potential underlying mechanisms, long-term clinical efficacy, and compliance of acupuncture in OP management.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Osteoporosis , Animales , Estudios Prospectivos , Puntos de Acupuntura , Osteoporosis/terapia
3.
Oxid Med Cell Longev ; 2022: 3697067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222796

RESUMEN

OBJECTIVE: This study was aimed at examining the effects of lycopene on bone metabolism in high-fat diet (HFD)- induced obese mice and to identify the potential underlying mechanisms. METHODS: Mice were fed a HFD for 12 weeks and then continue with or without lycopene intervention (15 mg/kg) for additional 10 weeks. The effects of lycopene on blood glucose and lipid metabolism, as well as serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined by biochemical assays. Bone histomorphological features and osteoclast activity were assessed by hematoxylin/eosin and tartrate-resistant acid phosphatase staining. Bone microstructure at the proximal tibial metaphysis and diaphysis was determined by microcomputed tomography. Tibial biomechanical strength and material profiles were measured by a three-point bending assay and Fourier transform infrared spectroscopy. Protein expressions involved in the AGE/RAGE/NF-кB signaling pathway were determined by western blot and/or immunohistochemical staining. RESULTS: Lycopene consumption reduced body weight gain and improved blood glucose and lipid metabolism in HFD-induced obese mice. In addition, lycopene treatment preserved bone biomechanical strength, material profiles, and microarchitecture in obese mice. Moreover, these alterations were associated with an increase in serum levels of T-AOC and SOD, and a decline in serum levels of MDA, as well as a reduction of AGEs, RAGE, cathepsin K, and p-NF-кBp65 and NF-кBp65 expressions in the femurs and tibias of obese mice. CONCLUSION: Lycopene may improve bone quality through its antioxidant properties, which may be linked with the regulation of the AGE/RAGE/NF-кB signaling pathway in obese mice. These results suggest that lycopene consumption may be beneficial for the management of obesity-induced osteoporosis.


Asunto(s)
Antioxidantes/farmacología , Huesos/efectos de los fármacos , Productos Finales de Glicación Avanzada/metabolismo , Licopeno/farmacología , FN-kappa B/metabolismo , Obesidad/tratamiento farmacológico , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Antioxidantes/administración & dosificación , Glucemia/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Catepsina K/metabolismo , Dieta Alta en Grasa/efectos adversos , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Metabolismo de los Lípidos/efectos de los fármacos , Licopeno/administración & dosificación , Ratones , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tibia/efectos de los fármacos , Tibia/metabolismo , Tibia/patología
4.
J Ethnopharmacol ; 282: 114653, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34547420

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY: To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS: BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS: BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS: BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.


Asunto(s)
Medicamentos Herbarios Chinos , Hemo-Oxigenasa 1 , Proteínas de la Membrana , Factor 2 Relacionado con NF-E2 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sirtuinas , Telomerasa , Proteína p53 Supresora de Tumor , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Proliferación Celular/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Linfocitos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Phytomedicine ; 92: 153717, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34583224

RESUMEN

BACKGROUND: Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE: The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS: For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS: Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION: Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.


Asunto(s)
Diabetes Mellitus , Panax , Plantas Medicinales , Animales , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hipoglucemiantes/farmacología , Fosfatidilinositol 3-Quinasas
6.
J Ethnopharmacol ; 279: 114348, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34153448

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Ligustri Lucidi (FLL) is an edible herb with anti-osteoporotic activity, yet whether and how the aqueous extract of this herb affect calcium metabolism in preservation of bone quality remain unclear. AIM OF THE STUDY: To investigate the effects of FLL aqueous extract on calcium balance and short-chain fatty acids (SCFAs) production in ovariectomized (OVX) rats. MATERIALS AND METHODS: OVX rats were daily and orally administrated with FLL aqueous extract (3.5 g/kg) for 14 weeks. The levels of N-terminal propeptide of type I collagen (PINP) and C-terminal telopeptide of type I collagen (CTx-I) in rat serum were evaluated by ELISA assays. The concentration of calcium in serum, urine, and feces were determined by biochemical assays. Bone quality was determined by Micro-CT, a three-point bending assay, and Fourier Transform Infrared (FTIR) Spectrometry. The expressions of Calbindin D28K and Calcium-sensing receptor (CaSR) in kidney as well as the Vitamin D receptor (VDR), the transient receptor potential vanilloid receptor 6 (TRPV6), Calbindin D9k in the duodenum were measured by immunohistochemistry, western blotting, or real-time PCR. The short-chain fatty acids (SCFAs) levels in the feces of the cecum were tested by gas chromatograghy. RESULTS: The administration of FLL to OVX rats resulted in a significant improvement in bone mineral density and biomechanical strength as well as in maintaining bone microstructures and material quality. Meanwhile, the decreased levels of PINP and increased levels of CTx-I in OVX rats were restored by FLL treatment. Additionally, FLL treatment increased calcium absorption, upregulated VDR, TRPV6, Calbindin D9k expressions in the duodenum, Calbindin D28K in kidney, and down-regulated CaSR expression in the kidney, as well as enhanced SCFAs levels in the feces of OVX rats. CONCLUSIONS: FLL aqueous extract may preserve bone quality through regulation of the calcium balance and intestinal SCFAs production in OVX rats. This offers translational value of FLL into osteoporosis clinical trial.


Asunto(s)
Calcio/metabolismo , Ligustrum/química , Osteoporosis/prevención & control , Extractos Vegetales/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Colágeno Tipo I/sangre , Ácidos Grasos Volátiles/metabolismo , Femenino , Frutas , Ovariectomía , Fragmentos de Péptidos/sangre , Procolágeno/sangre , Ratas , Ratas Sprague-Dawley
7.
J Ethnopharmacol ; 271: 113810, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33508368

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sperm infertility and testicular atrophy are symptoms associated with aging. BaZiBuShen formula (BZBS), a patented Chinese herbal prescription composed of Semen Cuscutae, Fructus Lycii, Epimedii Folium, Fructus Schisandrae Sphenantherae, Fructus Cnidii, Fructus Rosae Laevigatae, Semen Allii Tuberosi., Radix Morindae Officinalis, Herba Cistanches, Fructus Rubi, Radix Rehmanniae Recens, Radix Cyathulae, Radix Ginseng, Cervi Cornu Pantotrichum, Hippocampus, and Fuctus Toosendan, has been used as a kidney-tonifying and anti-aging drug as well as for the treatment of impotence and male infertility in traditional Chinese medicine. AIM OF THE STUDY: We aimed at investigating whether BZBS preserves sperm and testes morphology in aging mice, and to explore the underlying mechanisms. MATERIALS AND METHODS: BZBS was orally administered to aging mice induced by D-galactose (D-gal) and NaNO2 for 65 days. Sperm quality and testes pathophysiological alterations were examined by a Semen Analysis System, hematoxylin-eosin staining, transmission electron microscopy, and mitochondrial complex IV activity. In addition, serum levels of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-desoxyguanosine (8-OH-dG), reduced glutathione (GSH), oxidized glutathione disulfide (GSSG), testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and tumor necrosis factor-α (TNF-α) were determined by ELISA. The expressions of P450 aromatase (CYP19), sirtuin 6 (Sirt6), P53, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB)-p65, and phospho-NF-κB-p65 (NF-κB-pp65) in the testes were examined by western blot and/or immunohistochemical staining. RESULTS: Sustained exposure to D-gal/NaNO2 caused a deterioration of sperm quality and testes morphology in this rapid aging mouse model. BZBS treatment curtailed these alterations. These beneficial effects were associated with increased serum levels of TAC, GSH/GSSG, T, E2, and FSH, and decreased levels of MDA, TNF-α, and 8-OH-dG. BZBS treatment also downregulated the expressions of P53, iNOS, and NF-κB-pp65, as well as upregulated the expressions of Sirt6 and CYP19 in aging testes. CONCLUSIONS: BZBS preserves testicular morphology and spermatogenesis possibly via inhibition of oxidative stress and the modulation of the Sirt6/P53 and Sirt6/NF-κB signaling pathways. The results shed light on the beneficial effect of BZBS on sperm quality and fertility in aging males.


Asunto(s)
Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sirtuinas/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Envejecimiento , Animales , Antioxidantes/química , Aromatasa/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Complejo IV de Transporte de Electrones/metabolismo , Galactosa/toxicidad , Hormonas Esteroides Gonadales/metabolismo , Hipogonadismo/inducido químicamente , Hipogonadismo/prevención & control , Masculino , Medicina Tradicional China , Ratones Endogámicos ICR , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuinas/genética , Nitrito de Sodio/toxicidad , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética
8.
Phytother Res ; 35(1): 424-441, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32755017

RESUMEN

Fructus Ligustri Lucidi (FLL) has been preclinically and clinically used to treat musculoskeletal diseases. However, whether and how FLL affect the canonical Wnt/ß-catenin signaling in the management of osteoporosis remains largely unknown. To this end, ovariectomized (OVX) rats and primary osteoblasts were administrated with FLL aqueous extract and medicated serum, respectively. Supplement of FLL to OVX rats maintains bone quality by attenuating the reduction in bone mineral density, strength and microstructure. The maintenance may be associated with upregulating the expression of insulin-like growth factor-1, osteoprotegerin, phospho (p)-low-density lipoprotein receptor-related protein 6, p-glycogen synthase kinase 3 beta (GSK3ß), ß-catenin, Runx2 and c-Myc, and downregulating the expressions of sclerostin (SOST), dickkopf-related protein 1 (DKK1), GSK3ß and p-ß-catenin in rat femurs and tibias. In addition, the medicated serum promotes osteoblastic bone formation through activation of Wnt/ß-catenin signaling via inhibition of DKK1 and SOST overexpression. Salidroside may be one of the active ingredients in FLL that are beneficial for bone homeostasis. In summary, our results suggest that FLL may preserve bone quality through induction of canonical Wnt/ß-catenin signaling via inhibition of DKK1 and SOST overexpression. And FLL may offer a new source of the DKK1 or SOST inhibitors in protection against osteoporosis.


Asunto(s)
Huesos/efectos de los fármacos , Ligustrum/química , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacos , Alendronato , Animales , Densidad Ósea/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Frutas/química , Marcadores Genéticos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoblastos/efectos de los fármacos , Ovariectomía , Ratas , Ratas Sprague-Dawley
9.
Food Funct ; 11(10): 8743-8756, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955050

RESUMEN

Salvianolic acid B (Sal B) exhibits anti-obesity activity, yet the underlying mechanism linking this effect to metabolic endotoxemia remains unexplored. For this purpose, high-fat diet-induced obese mice were orally administered with Sal B for 10 weeks. Hematoxylin/eosin staining, transmission electron microscopy, and immunohistochemical staining were used to evaluate histopathological alterations in the white adipose tissue (WAT) and/or jejunums. The expression levels of genes related to fat and cholesterol synthesis in the WAT were determined by qPCR. The composition of fecal microbiota was profiled by 16S rRNA gene pyrosequencing. Western blotting was employed to evaluate the relative protein expressions involved in lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway in the WAT. Treatment of obese mice with Sal B improves insulin sensitivity, attenuates body weight gain and alleviates serum levels of LPS and tumor necrosis factor alpha, which is associated with an improvement in intestinal epithelial integrity and probiotic composition as well as a reduction in Gram-negative Proteobacteria and Deferribacteres. In addition, Sal B downregulates the expressions of TLR4 and myeloid differential factor-88, as well as the phosphorylation levels of Jun N-terminal kinase, nuclear factor-kappa B p65, and an insulin receptor substrate in the WAT. In summary, Sal B may attenuate body weight gain and insulin resistance through the regulation of gut microbiota abundances and LPS/TLR4 signaling pathway in obese mice, suggesting Sal B could be a promising drug candidate for protection against obesity.


Asunto(s)
Fármacos Antiobesidad/farmacología , Benzofuranos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Administración Oral , Animales , Dieta Alta en Grasa/efectos adversos , Lipopolisacáridos/metabolismo , Ratones , Ratones Obesos , Obesidad/etiología , Receptor Toll-Like 4/metabolismo
10.
Pharmacol Res ; 159: 104966, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32535223

RESUMEN

Lycopene, a natural pigment that mainly exists in the mature fruit of tomatoes, has gained increasing attention due to its protective effects against obesity and diabetes. The aim of this review is to summarize the potential mechanisms in which lycopene exerts protection against obesity and diabetes, along with highlighting its bioavailability, synthesis and safety. Literature sources used in this review were from the PubMed Database, China Knowledge Resource Integrated Database, China Science and Technology Journal Database, National Science and Technology Library, Wanfang Data, and the Web of Science. For the inquiries, keywords such as lycopene, properties, synthesis, diabetes, obesity, and safety were used in various combinations. About 200 articles and reviews were evaluated. Lycopene exhibits anti-obesity and anti-diabetic activities in different organs and/or tissues, including adipose tissue, liver, kidney, pancreas, brain, ovaries, intestine, and eyes. The underlying mechanism may be attributed to its anti-oxidant and anti-inflammatory properties and through its ability to regulate of AGE/RAGE, JNK/MAPK, PI3K/Akt, SIRT1/FoxO1/PPARγ signaling pathways and AchE activity. The epidemiological investigations support that lycopene consumption may contribute to lowering the risk of obesity and diabetes. The cis-isomers of lycopene are more bioavailable and better absorbed than trans-lycopene, and mainly distribute in liver and adipose tissue. Lycopene exhibits a good margin of safety and can be obtained by plant extraction, chemical synthesis and microbial fermentation. In summary, lycopene consumption beneficially contributes to protecting against diabetes and obesity in animal studies and epidemiological investigations, which supports the potential of this compound as a preventive/therapeutic agent against these disorders. Well-designed, prospective clinical studies are warranted to evaluate the potential therapeutic effect of lycopene against common metabolic diseases.


Asunto(s)
Fármacos Antiobesidad/farmacología , Diabetes Mellitus/prevención & control , Hipoglucemiantes/farmacología , Licopeno/farmacología , Obesidad/prevención & control , Animales , Fármacos Antiobesidad/farmacocinética , Disponibilidad Biológica , Diabetes Mellitus/epidemiología , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Humanos , Hipoglucemiantes/farmacocinética , Licopeno/farmacocinética , Obesidad/epidemiología , Obesidad/metabolismo , Transducción de Señal
11.
Molecules ; 24(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514313

RESUMEN

This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Glucósidos Iridoides/farmacocinética , Glucósidos Iridoides/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Glucósidos Iridoides/efectos adversos , Glucósidos Iridoides/química , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA