Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Hortic Res ; 11(7): uhae136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994448

RESUMEN

Flavonoids constitute the main nutraceuticals in the leaves of tea plants (Camellia sinensis). To date, although it is known that drought stress can negatively impact the biosynthesis of flavonoids in tea leaves, the mechanism behind this phenomenon is unclear. Herein, we report a protein phosphorylation mechanism that negatively regulates the biosynthesis of flavonoids in tea leaves in drought conditions. Transcriptional analysis revealed the downregulation of gene expression of flavonoid biosynthesis and the upregulation of CsMPK4a encoding a mitogen-activated protein kinase in leaves. Luciferase complementation and yeast two-hybrid assays disclosed that CsMPK4a interacted with CsWD40. Phosphorylation assay in vitro, specific protein immunity, and analysis of protein mass spectrometry indicated that Ser-216, Thr-221, and Ser-253 of CsWD40 were potential phosphorylation sites of CsMPK4a. Besides, the protein immunity analysis uncovered an increased phosphorylation level of CsWD40 in tea leaves under drought conditions. Mutation of the three phosphorylation sites generated dephosphorylated CsWD403A and phosphorylated CsWD403D variants, which were introduced into the Arabidopsis ttg1 mutant. Metabolic analysis showed that the anthocyanin and proanthocyanidin content was lower in ttg1:CsWD403D transgenic plants than ttg1::CsWD403A transgenic and wild type plants. The transient overexpression of CsWD403D downregulated the anthocyanidin biosynthesis in tea leaves. The dual-fluorescein protein complementation experiment showed that CsWD403D did not interact with CsMYB5a and CsAN2, two key transcription factors of procyanidins and anthocyanidins biosynthesis in tea plant. These findings indicate that the phosphorylation of CsWD40 by CsMPK4a downregulates the flavonoid biosynthesis in tea plants in drought stresses.

2.
Hortic Res ; 11(7): uhae129, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966865

RESUMEN

Long non-coding RNAs (lncRNAs) have gathered significant attention due to their pivotal role in plant growth, development, and biotic and abiotic stress resistance. Despite this, there is still little understanding regarding the functions of lncRNA in these domains in the tea plant (Camellia sinensis), mainly attributable to the insufficiencies in gene manipulation techniques for tea plants. In this study, we designed a novel strategy to identify evolutionarily conserved trans-lncRNA (ECT-lncRNA) pairs in plants. We used highly consistent base sequences in the exon-overlapping region between trans-lncRNAs and their target gene transcripts. Based on this method, we successfully screened 24 ECT-lncRNA pairs from at least two or more plant species. In tea, as observed in model plants such as Arabidopsis, alfalfa, potatoes, and rice, there exists a trans-lncRNA capable of forming an ECT-lncRNA pair with transcripts of the 12-oxophytodienoate reductase (OPR) family, denoted as the OPRL/OPR pair. Considering evolutionary perspectives, the OPRL gene cluster in each species likely originates from a replication event of the OPR gene cluster. Gene manipulation and gene expression analysis revealed that CsOPRL influences disease resistance by regulating CsOPR expression in tea plants. Furthermore, the knockout of StOPRL1 in Solanum tuberosum led to aberrant growth characteristics and strong resistance to fungal infection. This study provides insights into a strategy for the screening and functional verification of ECT-lncRNA pairs.

3.
Proc Natl Acad Sci U S A ; 121(31): e2400678121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052838

RESUMEN

Recollecting painful or traumatic experiences can be deeply troubling. Sleep may offer an opportunity to reduce such suffering. We developed a procedure to weaken older aversive memories by reactivating newer positive memories during sleep. Participants viewed 48 nonsense words each paired with a unique aversive image, followed by an overnight sleep. In the next evening, participants learned associations between half of the words and additional positive images, creating interference. During the following non-rapid-eye-movement sleep, auditory memory cues were unobtrusively delivered. Upon waking, presenting cues associated with both aversive and positive images during sleep, as opposed to not presenting cues, weakened aversive memory recall while increasing positive memory intrusions. Substantiating these memory benefits, computational modeling revealed that cueing facilitated evidence accumulation toward positive affect judgments. Moreover, cue-elicited theta brain rhythms during sleep predominantly predicted the recall of positive memories. A noninvasive sleep intervention can thus modify aversive recollection and affective responses.


Asunto(s)
Señales (Psicología) , Recuerdo Mental , Sueño , Humanos , Femenino , Sueño/fisiología , Masculino , Recuerdo Mental/fisiología , Adulto , Adulto Joven , Memoria/fisiología
4.
iScience ; 27(7): 110341, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055925

RESUMEN

People preferentially endorse positive personality traits as more self-descriptive than negative ones, a positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing, integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation (TMR). In the CAT, participants gave speeded motor responses to cued positive personality traits. In a subsequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR). Upon awakening, CAT+TMR facilitated participants' speed in endorsing positive traits in immediate tests, and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these enhancements were associated with the directionality of cue-related 1-4 Hz slow traveling waves (STW) that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively associated with these benefits, whereas forward STW showed negative associations. These findings demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based memory reactivation in strengthening positive self-referential processing.

5.
NPJ Sci Learn ; 9(1): 43, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971834

RESUMEN

People often change their evaluations upon learning about their peers' evaluations, i.e., social learning. Given sleep's vital role in consolidating daytime experiences, sleep may facilitate social learning, thereby further changing people's evaluations. Combining a social learning task and the sleep-based targeted memory reactivation technique, we asked whether social learning-induced evaluation updating can be modulated during sleep. After participants had indicated their initial evaluation of snacks, they learned about their peers' evaluations while hearing the snacks' spoken names. During the post-learning non-rapid-eye-movement sleep, we re-played half of the snack names (i.e., cued snack) to reactivate the associated peers' evaluations. Upon waking up, we found that the social learning-induced evaluation updating further enlarged for both cued and uncued snacks. Examining sleep electroencephalogram (EEG) activity revealed that cue-elicited delta-theta EEG power and the overnight N2 sleep spindle density predicted post-sleep evaluation updating for cued but not for uncued snacks. These findings underscore the role of sleep-mediated memory reactivation and the associated neural activity in supporting social learning-induced evaluation updating.

6.
Macromol Rapid Commun ; : e2400380, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012274

RESUMEN

Polylactic acid (PLA), derived from renewable resources, has the advantages of rigidity, thermoplasticity, biocompatibility, and biodegradability, and is widely used in many fields such as packaging, agriculture, and biomedicine. The excellent processability properties allow for melt processing treatments such as extrusion, injection molding, blow molding, and thermoforming in the preparation of PLA-based materials. However, the low toughness and poor thermal stability of PLA limit its practical applications. Compared with pure PLA, conditions such as processing technology, filler, and crystallinity affect the mechanical properties of PLA-based materials, including tensile strength, Young's modulus, and elongation at break. This review systematically summarizes various technical parameters for melt processing of PLA-based materials and further discusses the mechanical properties of PLA homopolymers, filler-reinforced PLA-based composites, PLA-based multiphase composites, and reactive composite strategies for PLA-based composites.

7.
Plant J ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838090

RESUMEN

Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase-like acyltransferases (SCPL-ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL-AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.

9.
Int J Biol Macromol ; 273(Pt 2): 133179, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880448

RESUMEN

Drought stress is the main factor restricting maize yield. Poly-γ-glutamic acid (γ-PGA), as a water-retaining agent and fertilizer synergist, could significantly improve the drought resistance and yield of many crops. However, its high production costs and unclear long-term impact on soil ecology limit its large-scale application. In this study, an environmentally friendly green material γ-PGA was heterologous synthesized in maize for the first time using the synthetic biology method. The genes (PgsA, PgsB, PgsC) participated in γ-PGA synthesis were cloned from Bacillus licheniformis and transformed into maize to produce γ-PGA for the first time. Under drought stress, transgenic maize significantly increased the ear length, ear weight and grain weight by 50 % compared to the control, whereas the yield characteristic of ear weight, grain number per ear, grain weight per ear and 100-grain weight increased by 1.67 %-2.33 %, 3.78 %-13.06 %, 8.41 %-22.06 %, 6.03 %-19.28 %, and 11.85 %-18.36 %, respectively under normal growth conditions. γ-PGA was mainly expressed in the mesophyll cells of maize leaf rosette structure and improved drought resistance and yield by protecting and increasing the expression of genes for the photosynthetic and carbon fixation. This study is an important exploration for maize drought stress molecular breeding and building resource-saving agriculture.


Asunto(s)
Sequías , Plantas Modificadas Genéticamente , Ácido Poliglutámico , Zea mays , Zea mays/genética , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/biosíntesis , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Hojas de la Planta/genética , Resistencia a la Sequía
10.
Plant Physiol Biochem ; 211: 108670, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703501

RESUMEN

Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Camellia sinensis/genética , Camellia sinensis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sequías , Genoma de Planta , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Oxilipinas/farmacología , Oxilipinas/metabolismo , Acetatos/farmacología
11.
Plant Physiol Biochem ; 211: 108726, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744083

RESUMEN

Tea is one of the most prevalent non-alcoholic beverages. The leaves of tea plants hyperaccumulate anthocyanins under cold stress, resulting in enhanced bitterness. Previously, we determined that the RING-type E3 ubiquitin ligase CsMIEL1 from the tea plant (Camellia sinensis (L.) O. Kuntze) is involved in the response to stress conditions. This study aimed to determine the role of CsMIEL1 in anthocyanin accumulation at the post-translational modification level. The results showed that the heterologous expression of CsMIEL1 led to an 86% decrease in anthocyanin levels, resulting in a significant decrease in the mRNA levels of related genes in Arabidopsis at low temperatures but no significant differences in other phenotypes. Furthermore, multi-omics analysis and yeast two-hybrid library screening were performed to identify potential downstream targets of CsMIEL1. The results showed that the overexpression of CsMIEL1 resulted in 45% (448) of proteins being differentially expressed, of which 8% (36) were downregulated in A.thaliana, and most of these differentially expressed proteins (DEPs) were clustered in the plant growth and secondary metabolic pathways. Among the 71 potential targets that may interact with CsMIEL1, CsMYB90 and CsGSTa, which are related to anthocyanin accumulation, were selected. In subsequent analyses, these two proteins were verified to interact with CsMIEL1 via yeast two-hybrid (Y2H) and pull-down analyses in vitro. In summary, we explored the potential mechanism by which the E3 ligase relieves anthocyanin hyperaccumulation at low temperatures in tea plants. These results provide a new perspective on the mechanisms of anthocyanin regulation and the molecular breeding of tea plants.


Asunto(s)
Antocianinas , Camellia sinensis , Frío , Proteínas de Plantas , Antocianinas/metabolismo , Camellia sinensis/metabolismo , Camellia sinensis/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Plantas Modificadas Genéticamente/metabolismo
12.
J Hazard Mater ; 471: 134331, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677116

RESUMEN

Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.


Asunto(s)
Bencimidazoles , Receptor Relacionado con Estrógeno ERRalfa , Éteres Difenilos Halogenados , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Animales , Masculino , Ratas , Bencimidazoles/farmacología , Éteres Difenilos Halogenados/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Células PC12 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Biosíntesis de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley
13.
Int J Biol Macromol ; 266(Pt 1): 130836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492700

RESUMEN

Glycosylation, a general post-translational modification for fungal cellulase, has been shown to affect cellulase binding to its substrate. However, the exact impact of glycosylation on cellulase-lignin interaction remain unclear. Here, we demonstrated that the lignin isolated from tetrahydrofuran-pretreated corn stover exhibits strong adsorption capability to cellulase due to its negatively charged and porous structure. For the cellulases with varying glycosylation levels, the less-glycosylated protein showed high adsorption capability to lignin, and that trend was observed for the main cellulase components secreted by Penicillium oxilicum, including endoglucanase PoCel5B, cellobiohydrolase PoCel7A-2, and ß-glucosidase PoBgl1. Additionally, N-glycan sites and motifs were examined using mass spectrometry, and protein structures with N-glycans were constructed, where PoBgl1 and PoCel7A-2 contained 13 and 1 glycosylated sites respectively. The results of molecular dynamics simulations indicated that the N-glycans impacted on the solvent-accessible surface area and secondary structure of protein, and the binding conformation of lignin fragment on cellulase, resulting in a decrease in binding energy (14 kcal/mol for PoBgl1 and 13 kcal/mol for PoCel7A-2), particularly for van der Waals and electrostatic interaction. Those findings suggested that glycosylation negatively impacted the lignin-cellulase interaction, providing a theoretical basis for the rational engineering of enzymes to reduce lignin-enzyme interaction.


Asunto(s)
Celulasa , Lignina , Simulación de Dinámica Molecular , Zea mays , Glicosilación , Lignina/química , Zea mays/química , Celulasa/química , Celulasa/metabolismo , Adsorción , Penicillium/enzimología , Penicillium/química , Unión Proteica , Polisacáridos/química
14.
Plant J ; 118(6): 1793-1814, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461478

RESUMEN

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.


Asunto(s)
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biosíntesis , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Hojas de la Planta/metabolismo , Hidroxilación , Retículo Endoplásmico/metabolismo
15.
Mater Horiz ; 11(11): 2749-2758, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38533828

RESUMEN

The intricate correlation between lattice geometry, topological behavior and charge degrees of freedom plays a key role in determining the physical and chemical properties of a quantum-magnetic system. Herein, we investigate the introduction of the unusual oxidation state as an alternative pathway to modulate the magnetic ground state in the well-known S = 1 Haldane system nickelate Y2BaNiO5 (YBNO). YBNO is topologically reduced to incorporate d9-Ni+ (S = 1/2) in the one-dimensional Haldane chain system. The random distribution of Ni+ for the first time results in the emergence of a one-dimensional ferromagnetic phase with a transition temperature far above room temperature. Theoretical calculations reveal that the antiferromagnetic interplay can evolve into ferromagnetic interactions with the presence of oxygen vacancies, which promotes the formation of ferromagnetic order within one-dimensional nickel chains. The unusual electronic instabilities in the nickel-based Haldane system may offer new possibilities towards unconventional physical and chemical properties from quantum interactions.

16.
Sci Adv ; 10(6): eadk1827, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324679

RESUMEN

Radiotherapy is hypothesized to have an immune-modulating effect on the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) to sensitize it to anti-PD-1 antibody (a-PD-1) treatment. We collected paired pre- and posttreatment specimens from a clinical trial evaluating combination treatment with GVAX vaccine, a-PD-1, and stereotactic body radiation (SBRT) following chemotherapy for locally advanced PDACs (LAPC). With resected PDACs following different neoadjuvant therapies as comparisons, effector cells in PDACs were found to skew toward a more exhausted status in LAPCs following chemotherapy. The combination of GVAX/a-PD-1/SBRT drives TME to favor antitumor immune response including increased densities of GZMB+CD8+ T cells, TH1, and TH17, which are associated with longer survival, however increases immunosuppressive M2-like tumor-associated macrophages (TAMs). Adding SBRT to GVAX/a-PD-1 shortens the distances from PD-1+CD8+ T cells to tumor cells and to PD-L1+ myeloid cells, which portends prolonged survival. These findings have guided the design of next radioimmunotherapy studies by targeting M2-like TAM in PDACs.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Pancreáticas , Humanos , Linfocitos T CD8-positivos/patología , Radioinmunoterapia , Receptor de Muerte Celular Programada 1 , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Microambiente Tumoral
17.
J Hazard Mater ; 467: 133634, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335616

RESUMEN

Elevated exposures to fluoride have been linked to neurological diseases. Identifying mechanisms of fluoride neurotoxicity and finding ways for prevention and treatment of epidemic fluorosis are important issues of public health. In this study, fluoride inhibited TFEB nuclear translocation by activating p-mTORC1/p-p70S6K, thus inhibiting lysosomal biogenesis, leading to dysfunctional lysosome accumulation, which further negatively affected autophagosome and lysosome fusion, thus impairing autophagy degradation, evidenced by the blocked conversion of LC3II to LC3I, and the increased p62 levels. Interestingly, RSV alleviated rats' cognition by improving fluoride-induced nerve damage and promoted lysosomal biogenesis demonstrated by the increased nucleus translocation of TFEB via inhibiting p-mTORC1 and p-p70S6K, the decreased expression of LC3II and p62. Collectively, we clarified the correlation between fluoride neurotoxicity and mTORC1/TFEB-mediated lysosomal biogenesis and autophagy. Meanwhile, RSV appeared to be a promising drug for the prevention and treatment of epidemic fluorosis.


Asunto(s)
Fluoruros , Síndromes de Neurotoxicidad , Animales , Ratas , Fluoruros/toxicidad , Resveratrol , Proteínas Quinasas S6 Ribosómicas 70-kDa , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Autofagia , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
18.
Int J Biol Macromol ; 262(Pt 1): 130026, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336313

RESUMEN

Three genes involved in poly-γ-glutamic acid(γ-PGA)synthesis cloned from Bacillus licheniformis were transformed into cucumber for the first time. Compared with control, its water content increased by 6-14 % and water loss rate decreased by 11-12 %. In zebrafish and human skin experiments, the moisturizing effect of transgenic cucumber was significantly higher than that of CK, γ-PGA and hyaluronic acid group. Transgenic cucumber reduced facial wrinkles and roughness by 19.58 % and 24.97 %, reduced skin melanin content by 5.27 %, increased skin topological angle and L-value by 5.89 % and 2.49 %, and increased the R2 and Q1 values of facial elasticity by 7.67 % and 5.64 %, respectively. The expressions of aqp3, Tyr, silv and OCA2 were down-regulated, eln1, eln2, col1a1a and col1a1b were up-regulated in zebrafish after treated with transgenic cucumber. This study provides an important reference for the endogenous synthesis of important skin care functional molecules in plants.


Asunto(s)
Cucumis sativus , Ácido Poliglutámico/análogos & derivados , Humanos , Animales , Cucumis sativus/genética , Cucumis sativus/metabolismo , Ácido Glutámico , Pez Cebra/metabolismo , Ácido Poliglutámico/farmacología , Ácido Poliglutámico/metabolismo , Agua/metabolismo , Proteínas de Transporte de Membrana , Proteínas de Pez Cebra/metabolismo
19.
Planta ; 259(2): 43, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277077

RESUMEN

MAIN CONCLUSION: ZmSUS1 improved drought tolerance of maize by regulating sucrose metabolism and increasing soluble sugar content, and endowing transgenic maize with higher relative water content and photosynthesis levels. Sucrose synthase (SUS), a key enzyme of sugar metabolism, plays an important role in the regulation of carbon partitioning in plant, and affects important agronomic traits and abiotic responses to adversity. However, the function of ZmSUS1 in plant drought tolerance is still unknown. In this study, the expression patterns of ZmSUS1 in different tissues and under drought stress were analyzed in maize (Zea mays L.). It was found that ZmSUS1 was highly expressed during kernel development but also in leaves and roots of maize, and ZmSUS1 was induced by drought stress. Homozygous transgenic maize lines overexpressing ZmSUS1 increased the content and activity of SUS under drought stress and exhibited higher relative water content, proline and abscisic acid content in leaves. Specifically, the net photosynthetic rate and the soluble sugar contents including sucrose, glucose, fructose and SUS decomposition products including UDP-glucose (UDP-G) and ADP-glucose (ADP-G) in transgenic plants were significantly improved after drought stress. RNA-seq analysis showed that overexpressing of ZmSUS1 mainly affected the expression level of carbon metabolism-related genes. Especially the expression level of sucrose metabolism-related genes including sucrose phosphatase gene (SPP), sucrose phosphate synthase gene (SPS) and invertase gene (INV) were significantly up-regulated in transgenic maize. Overall, these results suggested that ZmSUS1 improved drought tolerance by regulating sucrose metabolism and increasing the soluble sugar content, and endowing transgenic maize with higher relative water content and photosynthesis levels, which can serve as a new gene candidate for cultivating drought-resistant maize varieties.


Asunto(s)
Resistencia a la Sequía , Zea mays , Zea mays/metabolismo , Azúcares/metabolismo , Estrés Fisiológico , Sequías , Sacarosa/metabolismo , Agua/metabolismo , Glucosa/metabolismo , Carbono/metabolismo , Uridina Difosfato/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant Cell Environ ; 47(2): 698-713, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882465

RESUMEN

Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf-eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH-YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (-)-epicatechin-3-O-caffeoate (EC-CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC-CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC-CA. Transient overexpression of CsHCTs in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.


Asunto(s)
Camellia sinensis , Aprendizaje Profundo , Lepidópteros , Animales , Camellia sinensis/metabolismo , Insectos , Té/química , Té/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA