Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Exp Neurol ; 382: 114987, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369806

RESUMEN

Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-ß. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1ß and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.

2.
CNS Neurosci Ther ; 30(10): e70066, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39350345

RESUMEN

BACKGROUND: Ferroptosis, a form of programmed cell death featured by lipid peroxidation, has been proposed as a potential etiology for postoperative cognitive dysfunction (POCD). Myocyte-specific enhancer factor 2C (MEF2C), a transcription factor expressed in various brain cell types, has been implicated in cognitive disorders. This study sought to ascertain whether MEF2C governs postoperative cognitive capacity by affecting ferroptosis. METHODS: Transcriptomic analysis of public data was used to identify MEF2C as a candidate differentially expressed gene in the hippocampus of POCD mice. The POCD mouse model was established via aseptic laparotomy under isoflurane anesthesia after treatment with recombinant adeno-associated virus 9 (AAV9)-mediated overexpression of MEF2C and/or the glutathione peroxidase 4 (GPX4) inhibitor RSL3. Cognitive performance, Nissl staining, and ferroptosis-related parameters were assessed. Dual-luciferase reporter gene assays and chromatin immunoprecipitation assays were implemented to elucidate the mechanism by which MEF2C transcriptionally activates GPX4. RESULTS: MEF2C mRNA and protein levels decreased in the mouse hippocampus following anesthesia and surgery. MEF2C overexpression ameliorated postoperative memory decline, hindered lipid peroxidation and iron accumulation, and enhanced antioxidant capacity, which were reversed by RSL3. Additionally, MEF2C was found to directly bind to the Gpx4 promoter and activate its transcription. CONCLUSIONS: Our findings suggest that MEF2C may be a promising therapeutic target for POCD through its negative modulation of ferroptosis.


Asunto(s)
Ferroptosis , Factores de Transcripción MEF2 , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Complicaciones Cognitivas Postoperatorias , Animales , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Factores de Transcripción MEF2/metabolismo , Ratones , Complicaciones Cognitivas Postoperatorias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Masculino , Hipocampo/metabolismo
3.
Spinal Cord ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251809

RESUMEN

STUDY DESIGN: Qualitative studies. OBJECTIVES: Spinal cord injury (SCI) is one of the most devastating injuries to the central nervous system that places a major burden on society. Neuromodulation technology involving spinal cord stimulation (SCS) and sacral nerve modulation (SNM) is a promising technique for patients with SCI. However, there has been no bibliometric analysis of research in this field to date. SETTING: Not applicable. METHODS: Systematic analyses of countries, institutions, authors, journals, co-cited documents, keywords, genes and diseases were performed. Related gene and disease data from the citexs platform were also reviewed. A total of 7437 articles on SCS and SNM in SCI were retrieved from the Web of Science database. The search time was limited to 1985-01-01 to 2022-12-31. RESULTS: We identified a significant increase in research output on SCS and SNM in SCI in recent years, with a concentrated period of high publication activity. Multiple publications were identified on neuropathic pain, electronic stimulation, TNF, BDNF and STAT3 gene expression, indicating that complications and potential therapeutic strategies for SCI are a key focus in the field. CONCLUSION: Our study provides insights that may help to advance scientific research and potentially improve outcomes in patients with SCI.

4.
Biomed Pharmacother ; 179: 117383, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232383

RESUMEN

Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.


Asunto(s)
Daño por Reperfusión Miocárdica , Proteína Desglicasa DJ-1 , Proteína Desglicasa DJ-1/metabolismo , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos
5.
Int J Surg ; 110(9): 5496-5504, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275772

RESUMEN

BACKGROUND: Postoperative delirium (POD) is a serious and common complication. The aim of present study is to investigate the diurnal variation of POD and the effects of esketamine in elderly patients. METHODS: A randomized, double-blind, placebo-controlled clinical trial with factorial design was conducted. Patients (aged 65 to 85 years) with normal Mini-Mental State Examination (MMSE) score were stratified by age (≤70 vs. >70) and American Society of Anesthesiologists physical status classification (Ⅱ vs. Ⅲ), then randomly assigned to either morning (08:00-12:00) or afternoon (14:00-18:00) noncardiac operation under general anesthesia with or without esketamine administration (0.2 mg/kg). The primary outcome was the incidence of POD (3-Minute Diagnostic Interview for Confusion Assessment Method-defined Delirium, 3D-CAM) on postoperative days 1, 3, and 7. The secondary outcomes were the scores of MMSE and Hospital Anxiety and Depression Scale. The intention-to-treat analysis of the outcomes were performed by generalized estimating equation. RESULTS: Six patients who did not receive an intervention because of canceled operation were excluded after randomization. The datasets containing 426 cases were analyzed following the intention-to-treat principle after handling missing data via multiple imputation method. The incidence of POD declined from about 55% on postoperative day 1 to 31 and 18% on postoperative days 3 and 7, respectively. Afternoon operation [B=-0.583, OR (95% CI) 0.558 (0.319-0.976); P=0.041], but not esketamine, significantly decreased the incidence of POD. Both esketamine and operation time failed to significantly affect MMSE, HAD, and NRS score. There was no interaction among operation time, esketamine, and follow up time. CONCLUSION: Elderly patients undergoing elective noncardiac surgery in the afternoon displayed lower POD incidence than those operated in the morning. A single low-dose of esketamine before general anesthesia induction failed to significantly decrease the risk of POD but decrease the risk of intraoperative hypotension and emergence agitation.


Asunto(s)
Procedimientos Quirúrgicos Electivos , Ketamina , Complicaciones Posoperatorias , Humanos , Ketamina/administración & dosificación , Anciano , Femenino , Masculino , Método Doble Ciego , Anciano de 80 o más Años , Procedimientos Quirúrgicos Electivos/efectos adversos , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Anestesia General/efectos adversos , Ritmo Circadiano , Delirio/prevención & control , Delirio/epidemiología , Delirio/diagnóstico , Delirio del Despertar/prevención & control , Delirio del Despertar/epidemiología , Delirio del Despertar/diagnóstico
7.
Biochem Pharmacol ; 227: 116418, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996928

RESUMEN

Ovarian tumor domain-containing protease 1 (OTUD1) is a critical negative regulator that promotes innate immune homeostasis and is extensively involved in the pathogenesis of sepsis. In this study, we performed a powerful integration of multiomics analysis and an experimental mechanistic investigation to elucidate the immunoregulatory role of OTUD1 in sepsis at the clinical, animal and cellular levels. Our study revealed the upregulation of OTUD1 expression and the related distinctive alterations observed via multiomics profiling in clinical and experimental sepsis. Importantly, in vivo and in vitro, OTUD1 was shown to negatively regulate inflammatory responses and play a protective role in sepsis-induced pathological lung injury by mechanistically inhibiting the activation of the transforming growth factor-beta-activated kinase 1 (TAK1)-mediated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways in the present study. Subsequently, we probed the molecular mechanisms underlying OTUD1's regulation of NF-κB and MAPK pathways by pinpointing the target proteins that OTUD1 can deubiquitinate. Drawing upon prior research conducted in our laboratory, it has been demonstrated that tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) performs a protective function in septic lung injury and septic encephalopathy by suppressing the NF-κB and MAPK pathways. Hence, we hypothesized that TIPE2 might be a target protein of OTUD1. Additional experiments, including Co-IP, immunofluorescence co-localization, and Western blotting, revealed that OTUD1 indeed has the ability to deubiquitinate TIPE2. In summary, OTUD1 holds potential as an immunoregulatory and inflammatory checkpoint agent, and could serve as a promising therapeutic target for sepsis-induced lung injury.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Ratones Endogámicos C57BL , FN-kappa B , Sepsis , Proteasas Ubiquitina-Específicas , Animales , Humanos , Masculino , Ratones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/metabolismo , Sepsis/metabolismo , Transducción de Señal/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
8.
J Am Heart Assoc ; 13(15): e033341, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39023057

RESUMEN

Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.


Asunto(s)
Envejecimiento , Accidente Cerebrovascular Isquémico , Estrés Oxidativo , Humanos , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Envejecimiento/fisiología , Envejecimiento/patología , Remodelación Vascular/fisiología , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Factores de Riesgo , Senescencia Celular/fisiología , Animales
9.
Diabetes Obes Metab ; 26(9): 3940-3957, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38988216

RESUMEN

AIM: Post-transcriptional modifications and their specific mechanisms are the focus of research on the regulation of myocardial damage. Stress granules (SGs) can inhibit the inflammatory response by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. This study investigated whether alkylation repair homologue protein 5 (ALKBH5) could affect myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion injury (IRI) through the cGAS-STING pathway via SGs. METHODS: A diabetes ischaemia-reperfusion rat model and a high glucose hypoxia/reoxygenation cell model were established. Adeno-associated virus (AAV) and lentivirus (LV) were used to overexpress ALKBH5, while the SG agonist arsenite (Ars) and the SG inhibitor anisomycin were used as interventions. Then, the levels of apoptosis and related indicators in the cell and rat models were measured. RESULTS: In the in vivo experiment, compared with the normal sham group, the degree of myocardial tissue damage, creatine kinase-MB and cardiac troponin I in serum, and myocardial apoptosis, the infarcted area of myocardium, and the level of B-cell lymphoma 2 associated X protein, cGAS-STING pathway and inflammatory factors in the diabetes ischaemia-reperfusion group were significantly increased. However, the expression of SGs and the levels of ALKBH5, rat sarcoma-GTPase-activating protein-binding protein 1, T-cell intracellular antigen-1 and Bcl2 were significantly decreased. After AAV-ALKBH5 intervention, the degree of myocardial tissue damage, degree of myocardial apoptosis, and extent of myocardial infarction in myocardial tissue were significantly decreased. In the in vitro experiment, compared with those in the normal control group, the levels of lactate dehydrogenase, inflammation and apoptosis were significantly greater, and cell viability and the levels of ALKBH5 and SGs were decreased in the high glucose and hypoxia/reoxygenation groups. In the high glucose hypoxia/reoxygenation cell model, the degree of cell damage, inflammation, and apoptosis was greater than those in the high glucose and hypoxia/reoxygenation models, and the levels of ALKBH5 and SGs were further decreased. LV-ALKBH5 and Ars alleviated the degree of cell damage and inhibited inflammation and cell apoptosis. The inhibition of SGs could partly reverse the protective effect of LV-ALKBH5. The cGAS agonist G140 antagonized the inhibitory effects of the SG agonist Ars on cardiomyocyte apoptosis, inflammation and the cGAS-STING pathway. CONCLUSION: Both ALKBH5 and SGs inhibited myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion. Mechanistically, ALKBH5 might inhibit the apoptosis of cardiomyocytes by promoting the expression of SGs through the cGAS-STING pathway.


Asunto(s)
Apoptosis , Daño por Reperfusión Miocárdica , Transducción de Señal , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Ratas , Masculino , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo
10.
Neurochem Int ; 178: 105788, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38843953

RESUMEN

Neuroinflammation is a major driver of postoperative cognitive dysfunction (POCD). The cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signaling is a prominent alarming device for aberrant double-stranded DNA (dsDNA) that has emerged as a key mediator of neuroinflammation in cognitive-related diseases. However, the role of the cGAS-STING pathway in the pathogenesis of POCD remains unclear. A POCD model was developed in male C57BL/6J mice by laparotomy under isoflurane (Iso) anesthesia. The cGAS inhibitor RU.521 and caspase-3 agonist Raptinal were delivered by intraperitoneal administration. BV2 cells were exposed to Iso and lipopolysaccharide (LPS) in the absence or presence of RU.521, and then cocultured with HT22 cells in the absence or presence of Raptinal. Cognitive function was assessed using the Morris water maze test and novel object recognition test. Immunofluorescence assays were used to observe the colocalization of dsDNA and cGAS. The downstream proteins and pro-inflammatory cytokines were detected using the Western blot and enzyme-linked immunosorbent assay (ELISA). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to assess the degree of cell death in the hippocampus following anesthesia/surgery treatment. Isoflurane/laparotomy and Iso + LPS significantly augmented the levels of cGAS in the hippocampus and BV2 cells, accompanied by mislocalized dsDNA accumulation in the cytoplasm. RU.521 alleviated cognitive impairment, diminished the levels of 2'3'-cGAMP, cGAS, STING, phosphorylated NF-κB p65 and NF-κB-pertinent pro-inflammatory cytokines (TNFα and IL-6), and repressed pyroptosis-associated elements containing cleaved caspase-3, N-GSDME, IL-1ß and IL-18. These phenotypes could be rescued by Raptinal in vivo and in vitro. These findings suggest that pharmacological inhibition of cGAS mitigates neuroinflammatory burden of POCD by dampening caspase-3/GSDME-dependent pyroptosis, providing a potential therapeutic strategy for POCD.


Asunto(s)
Caspasa 3 , Ratones Endogámicos C57BL , Nucleotidiltransferasas , Complicaciones Cognitivas Postoperatorias , Piroptosis , Animales , Masculino , Ratones , Piroptosis/efectos de los fármacos , Piroptosis/fisiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/prevención & control , Complicaciones Cognitivas Postoperatorias/tratamiento farmacológico , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Caspasa 3/metabolismo
11.
Shock ; 62(3): 447-456, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904464

RESUMEN

ABSTRACT: Diabetes and myocardial ischemia reperfusion (MIR) injury are characterized by oxidative stress, inflammation, autophagy disorders, and cardiac contractile dysfunction. Klotho and SIRT1 regulate the level of oxidative stress to participate in the regulation of many physiological functions such as cell survival, aging, apoptosis, autophagy, mitochondrial biogenesis, and inflammation. We hypothesized that the activation of Klotho/SIRT1 signaling pathway could attenuate MIR in diabetic rats. Type 1 diabetes and MIR injury model were established to examine this hypothesis in vivo . Primary rat cardiomyocytes and H9c2 cells were exposed to high glucose conditions and hypoxia/reoxygenation (H/R) insult in vitro . Hemodynamic parameters of heart function, myocardial infarct size, oxidative stress, markers of MIR injury or cell viability, and the mRNA and protein expression of Klotho and SIRT1 were measured. There was lower expression of Klotho and SIRT1 in diabetic MIR hearts than in nondiabetic rats, as well as significantly increased oxidative stress levels and decreased autophagy levels. Recombinant Klotho (rKlotho) protein and the SIRT1 agonist SRT1720 could significantly attenuate MIR injury in diabetes by activating Klotho/SIRT1 signaling pathway to reduce oxidative stress and restore autophagy levels. These findings suggest that the Klotho/SIRT1 pathway plays an important role in MIR injury in diabetic rats, and rKlotho protein and agonist SRT1720 have therapeutic potential for alleviating diabetic myocardial IR injury by activating Klotho/SIRT1 to reduce oxidative stress and restore autophagy levels.


Asunto(s)
Diabetes Mellitus Experimental , Glucuronidasa , Proteínas Klotho , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Animales , Masculino , Ratas , Autofagia , Diabetes Mellitus Experimental/metabolismo , Glucuronidasa/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuina 1/metabolismo
12.
J Cancer Res Clin Oncol ; 150(6): 316, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910204

RESUMEN

BACKGROUND: Liver cancer (LC) is a prevalent malignancy and a leading cause of cancer-related mortality worldwide. Extensive research has been conducted to enhance patient outcomes and develop effective prevention strategies, ranging from molecular mechanisms to clinical interventions. Single-cell sequencing, as a novel bioanalysis technology, has significantly contributed to the understanding of the global cognition and dynamic changes in liver cancer. However, there is a lack of bibliometric analysis in this specific research area. Therefore, the objective of this study is to provide a comprehensive overview of the knowledge structure and research hotspots in the field of single-cell sequencing in liver cancer research through the use of bibliometrics. METHOD: Publications related to the application of single-cell sequencing technology to liver cancer research as of December 31, 2023, were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. RESULTS: A total of 331 publications from 34 countries, primarily led by China and the United States, were included in this study. The research focuses on the application of single cell sequencing technology to liver cancer, and the number of related publications has been increasing year by year. The main research institutions involved in this field are Fudan University, Sun Yat-Sen University, and the Chinese Academy of Sciences. Frontiers in Immunology and Nature Communications is the most popular journal in this field, while Cell is the most frequently co-cited journal. These publications are authored by 2799 individuals, with Fan Jia and Zhou Jian having the most published papers, and Llovet Jm being the most frequently co-cited author. The use of single cell sequencing to explore the immune microenvironment of liver cancer, as well as its implications in immunotherapy and chemotherapy, remains the central focus of this field. The emerging research hotspots are characterized by keywords such as 'Gene-Expression', 'Prognosis', 'Tumor Heterogeneity', 'Immunoregulation', and 'Tumor Immune Microenvironment'. CONCLUSION: This is the first bibliometric study that comprehensively summarizes the research trends and developments on the application of single cell sequencing in liver cancer. The study identifies recent research frontiers and hot directions, providing a valuable reference for researchers exploring the landscape of liver cancer, understanding the composition of the immune microenvironment, and utilizing single-cell sequencing technology to guide and enhance the prognosis of liver cancer patients.


Asunto(s)
Bibliometría , Neoplasias Hepáticas , Análisis de la Célula Individual , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Análisis de la Célula Individual/métodos
13.
Antioxidants (Basel) ; 13(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38790676

RESUMEN

Protein posttranslational modifications are important factors that mediate the fine regulation of signaling molecules. O-linked ß-N-acetylglucosamine-modification (O-GlcNAcylation) is a monosaccharide modification on N-acetylglucosamine linked to the hydroxyl terminus of serine and threonine of proteins. O-GlcNAcylation is responsive to cellular stress as a reversible and posttranslational modification of nuclear, mitochondrial and cytoplasmic proteins. Mitochondrial proteins are the main targets of O-GlcNAcylation and O-GlcNAcylation is a key regulator of mitochondrial homeostasis by directly regulating the mitochondrial proteome or protein activity and function. Disruption of O-GlcNAcylation is closely related to mitochondrial dysfunction. More importantly, the O-GlcNAcylation of cardiac proteins has been proven to be protective or harmful to cardiac function. Mitochondrial homeostasis is crucial for cardiac contractile function and myocardial cell metabolism, and the imbalance of mitochondrial homeostasis plays a crucial role in the pathogenesis of cardiovascular diseases (CVDs). In this review, we will focus on the interactions between protein O-GlcNAcylation and mitochondrial homeostasis and provide insights on the role of mitochondrial protein O-GlcNAcylation in CVDs.

14.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698453

RESUMEN

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Poscondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Fosfohidrolasa PTEN , Proteína Desglicasa DJ-1 , Ratas Sprague-Dawley , Animales , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Transporte de Proteínas , Estreptozocina , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología
15.
Mol Cell Biochem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717685

RESUMEN

Despite enormous advances in the treatment of cardiovascular diseases, including I/R injury and heart failure, heart diseases remain a leading cause of mortality worldwide. Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor endoplasmic reticulum (ER) transmembrane protein that senses ER stress. It manages ER stress induced by the accumulation of unfolded/misfolded proteins via the unfolded protein response (UPR). However, if the stress still persists, the UPR pathways are activated and induce cell death. Emerging evidence shows that, beyond the UPR, IRE1 participates in the progression of cardiovascular diseases by regulating inflammation levels, immunity, and lipid metabolism. Here, we summarize the recent findings and discuss the potential therapeutic effects of IRE1 in the treatment of cardiovascular diseases.

16.
J Pain Res ; 17: 1881-1901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803692

RESUMEN

Background: In traditional Chinese medicine, Ligusticum chuanxiong Hort. (LCH) is used to treat neuropathic pain (NP). This study was performed to investigate the underlying pharmacological mechanisms. Methods: The main components of the LCH were obtained from the TCMSP database. The targets of the active components were obtained using the Swiss Target Prediction database and HERB database. The NP-related genes were obtained from the CTD database and GeneCard database. Protein-protein interaction (PPI) network was constructed using the STRING platform and Cytoscape 3.9.0 software. GO and KEGG enrichment analyses were performed using the DAVID database. Interactions between the key components and hub target proteins were verified using molecular docking and molecular dynamics simulation. In addition, microglial cell line HMC3 was induced to polarize to the M1 phenotype using 100 ng/mL lipopolysaccharide (LPS). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and enzyme-linked immunosorbent assays were used to detect the expression levels of M1 markers and inflammatory factors, respectively. Results: Seven LCH active components of LCH were identified, corresponding to 387 target genes. 2019 NP-related genes were obtained, and a total of 174 NP-related genes were identified as target genes that could be modulated by LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol were considered as the key components of LCH in the treatment of NP. SRC, BCL2, AKT1, HIF1A and HSP90AA1 were identified as the hub target proteins. GO analysis showed that 328 biological processes, 61 cell components, and 85 molecular functions were likely modulated by the components of LCH, and KEGG enrichment analysis showed that 132 signaling pathways were likely modulated by the components of LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol showed good binding activity with hub target proteins including SRC, BCL2, AKT1, and HSP90AA1. In addition, beta-sitosterol inhibited LPS-induced M1 polarization in HMC3 in vitro. Conclusion: This study provides a theoretical basis for the application of LCH in the treatment of NP through multicomponent, multitarget, and multiple pathways.

17.
Front Med (Lausanne) ; 11: 1360508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716419

RESUMEN

Objective: Ciprofol (also known as cipepofol and HSK3486), is a compound similar to propofol in chemical structure and hypnotic effect. Herein we evaluated the efficacy and safety of ciprofol for sedation in outpatient gynecological procedures. Methods: This phase III multicenter randomized trial with a non-inferiority design was conducted in nine tertiary hospitals. We enrolled 135 women aged 18-65 years who were scheduled for ambulatory gynecological procedures. Patients were randomly assigned to receive either ciprofol (0.4 mg/kg for induction and 0.2 mg/kg for maintenance) or propofol (2.0 mg/kg for induction and 1.0 mg/kg for maintenance) sedation in a 2:1 ratio. Patients and investigators for data collection and outcome assessment were blinded to study group assignments. The primary outcome was the success rate of sedation, defined as completion of procedure without remedial anesthetics. The non-inferiority margin was set at -8%. Secondary outcomes included time to successful induction, time to full awake, time to meet discharge criteria, and satisfaction with sedation assessed by patients and doctors. We also monitored occurrence of adverse events and injection pain. Results: A total of 135 patients were enrolled; 134 patients (90 patients received ciprofol sedation and 44 patients propofol sedation) were included in final intention-to-treat analysis. The success rates were both 100% in the two groups (rate difference, 0.0%; 95% CI, -4.1 to 8.0%), i.e., ciprofol was non-inferior to propofol. When compared with propofol sedation, patients given ciprofol required more time to reach successful induction (median difference [MD], 2 s; 95% CI, 1 to 7; p < 0.001), and required more time to reach full awake (MD, 2.3 min; 95% CI, 1.4 to 3.1; p < 0.001) and discharge criteria (MD, 2.3 min; 95% CI, 1.5 to 3.2; p < 0.001). Fewer patients in the ciprofol group were dissatisfied with sedation (relative risk, 0.21; 95% CI, 0.06 to 0.77; p = 0.024). Patients given ciprofol sedation had lower incidences of treat-emergent adverse events (34.4% [31/90] vs. 79.5% [35/44]; p < 0.001) and injection pain (6.7% [6/90] vs. 61.4% [27/44]; p < 0.001). Conclusion: Ciprofol for sedation in ambulatory gynecological procedures was non-inferior to propofol, with less adverse events and injection pain. Clinical trial registration: ClinicalTrials.gov, identifier NCT04958746.

18.
Front Med (Lausanne) ; 11: 1359878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681056

RESUMEN

Background: There is still a controversy about the superiority of liposomal bupivacaine (LB) over traditional local anesthetics in postoperative analgesia after thoracic surgery. This study aims to determine the effect of LB versus bupivacaine hydrochloride (HCl) for preoperative ultrasound-guided erector spinae plane block (ESPB) on postoperative acute and chronic pain in patients undergoing video-assisted thoracoscopic lung surgery. Methods: This multicenter, randomized, double-blind, controlled trial will include 272 adult patients scheduled for elective video-assisted thoracoscopic lung surgery. Patients will be randomly assigned, 1:1 and stratified by site, to the liposomal bupivacaine (LB) group or the bupivacaine (BUPI) HCl group. All patients will receive ultrasound-guided ESPB with either LB or bupivacaine HCl before surgery and patient-controlled intravenous analgesia (PCIA) as rescue analgesia after surgery. The numeric rating scale (NRS) score will be assessed after surgery. The primary outcome is the area under the curve of pain scores at rest for 0-72 h postoperatively. The secondary outcomes include the total amount of opioid rescue analgesics through 0-72 h postoperatively, time to the first press on the PCIA device as rescue analgesia, the area under the curve of pain scores on activity for 0-72 h postoperatively, NRS scores at rest and on activity at different time points during the 0-72 h postoperative period, Quality of Recovery 15 scores at 72 h after surgery, and NRS scores on activity on postsurgical day 14 and postsurgical 3 months. Adverse events after the surgery are followed up to the postsurgical day 7, including postoperative nausea and vomiting, fever, constipation, dizziness, headache, insomnia, itching, prolonged chest tube leakage, new-onset atrial fibrillation, severe ventricular arrhythmia, deep venous thrombosis, pulmonary embolism, pulmonary atelectasis, cardiac arrest, ileus, urinary retention, chylothorax, pneumothorax, and organ failure. Analyzes will be performed first according to the intention to treat principle and second with the per-protocol analysis. Discussion: We hypothesize that LB for preoperative ultrasound-guided ESPB would be more effective than bupivacaine HCl in reducing postoperative pain in video-assisted thoracoscopic lung surgery. Our results will contribute to the optimization of postoperative analgesia regimens for patients undergoing video-assisted thoracoscopic lung surgery.Clinical trial registration:http://www.chictr.org.cn, identifier ChiCTR2300074852.

19.
Int Immunopharmacol ; 132: 112002, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608473

RESUMEN

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.


Asunto(s)
Ácidos Grasos , Fibrosis , Riñón , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Daño por Reperfusión , Transducción de Señal , Sirtuina 1 , Factor de Transcripción Sp1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ácidos Grasos/metabolismo , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Ratones , Riñón/patología , Riñón/metabolismo , Masculino , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Humanos , Modelos Animales de Enfermedad
20.
Heliyon ; 10(7): e28738, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560247

RESUMEN

Background: Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods: A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results: The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion: This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA