Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Mater ; : e2410537, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300857

RESUMEN

Maximizing the catalytic activity of single-atom and nanocluster catalysts through the modulation of the interaction between these components and the corresponding supports is crucial but challenging. Herein, guided by theoretical calculations, a nanoporous bilayer WS2 Moiré superlattices (MSLs) supported Au nanoclusters (NCs) adjacent to Ru single atoms (SAs) (Ru1/Aun-2LWS2) is developed for alkaline hydrogen evolution reaction (HER) for the first time. Theoretical analysis suggests that the induced robust electronic metal-support interaction effect in Ru1/Aun-2LWS2 is prone to promote the charge redistribution among Ru SAs, Au NCs, and WS2 MSLs support, which is beneficial to reduce the energy barrier for water adsorption and thus promoting the subsequent H2 formation. As feedback, the well-designed Ru1/Aun-2LWS2 electrocatalyst exhibits outstanding HER performance with high activity (η10 = 19 mV), low Tafel slope (35 mV dec-1), and excellent long-term stability. Further, in situ, experimental studies reveal that the reconstruction of Ru SAs/NCs with S vacancies in Ru1/Aun-2LWS2 structure acts as the main catalytically active center, while high-valence Au NCs are responsible for activating and stabilizing Ru sites to prevent the dissolution and deactivation of active sites. This work offers guidelines for the rational design of high-performance atomic-scale electrocatalysts.

2.
Nat Commun ; 15(1): 7179, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169004

RESUMEN

The insufficient availability and activity of interfacial water remain a major challenge for alkaline hydrogen evolution reaction (HER). Here, we propose an "on-site disruption and near-site compensation" strategy to reform the interfacial water hydrogen bonding network via deliberate cation penetration and catalyst support engineering. This concept is validated using tip-like bimetallic RuNi nanoalloys planted on super-hydrophilic and high-curvature carbon nanocages (RuNi/NC). Theoretical simulations suggest that tip-induced localized concentration of hydrated K+ facilitates optimization of interfacial water dynamics and intermediate adsorption. In situ synchrotron X-ray spectroscopy endorses an H* spillover-bridged Volmer‒Tafel mechanism synergistically relayed between Ru and Ni. Consequently, RuNi/NC exhibits low overpotential of 12 mV and high durability of 1600 h at 10 mA cm‒2 for alkaline HER, and demonstrates high performance in both water electrolysis and chlor-alkali electrolysis. This strategy offers a microscopic perspective on catalyst design for manipulation of the local interfacial water structure toward enhanced HER kinetics.

3.
Natl Sci Rev ; 11(9): nwae255, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39175595

RESUMEN

The Jahn-Teller effect (JTE) arising from lattice-electron coupling is a fascinating phenomenon that profoundly affects important physical properties in a number of transition-metal compounds. Controlling JT distortions and their corresponding electronic structures is highly desirable to tailor the functionalities of materials. Here, we propose a local coordinate strategy to regulate the JTE through quantifying occupancy in the [Formula: see text] and [Formula: see text] orbitals of Mn and scrutinizing the symmetries of the ligand oxygen atoms in MnO6 octahedra in LiMn2O4 and Li0.5Mn2O4. The effectiveness of such a strategy has been demonstrated by constructing P2-type NaLi x Mn1 - x O2 oxides with different Li/Mn ordering schemes. In addition, this strategy is also tenable for most 3d transition-metal compounds in spinel and perovskite frameworks, indicating the universality of local coordinate strategy and the tunability of the lattice-orbital coupling in transition-metal oxides. This work demonstrates a useful strategy to regulate JT distortion and provides useful guidelines for future design of functional materials with specific physical properties.

4.
Small ; : e2403427, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076054

RESUMEN

The development of highly efficient electrocatalysts for the sluggish anodic oxygen evolution reaction (OER) is crucial to meet the practical demand for water splitting. In this study, an effective approach is proposed that simultaneously enhances interfacial interaction and catalytic activity by modifying Fe2O3/CoS heterojunction using Ru doping strategy to construct an efficient electrocatalytic oxygen evolution catalyst. The unique morphology of Ru doped Fe2O3 (Ru-Fe2O3) nanoring decorated by CoS nanoparticles ensures a large active surface area and a high number of active sites. The designed Ru-Fe2O3/CoS catalyst achieves a low OER overpotential (264 mV) at 10 mA cm-2 and demonstrates exceptional stability even at high current density of 100 mA cm-2, maintaining its performance for an impressive duration of 90 h. The catalytic performance of this Ru-Fe2O3/CoS catalyst surpasses that of other iron-based oxide catalysts and even outperforms the state-of-the-art RuO2. Density functional theory (DFT) calculation as well as experimental in situ characterization confirm that the introduction of Ru atoms can enhance the interfacial electron interaction, accelerating the electron transfer, and serve as highly active sites reducing the energy barrier for rate determination step. This work provides an efficient strategy to reveal the enhancement of electrocatalytic oxygen evolution activity of heterojunction catalysts by doping engineering.

5.
Nano Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842462

RESUMEN

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

6.
Adv Mater ; 36(33): e2310659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871360

RESUMEN

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

7.
J Am Chem Soc ; 146(21): 14889-14897, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747066

RESUMEN

Ni-rich cathodes are some of the most promising candidates for advanced lithium-ion batteries, but their available capacities have been stagnant due to the intrinsic Li+ storage sites. Extending the voltage window down can induce the phase transition from O3 to 1T of LiNiO2-derived cathodes to accommodate excess Li+ and dramatically increase the capacity. By setting the discharge cutoff voltage of LiNi0.6Co0.2Mn0.2O2 to 1.4 V, we can reach an extremely high capacity of 393 mAh g-1 and an energy density of 1070 Wh kg-1 here. However, the phase transition causes fast capacity decay and related structural evolution is rarely understood, hindering the utilization of this feature. We find that the overlithiated phase transition is self-limiting, which will transform into solid-solution reaction with cycling and make the cathode degradation slow down. This is attributed to the migration of abundant transition metal ions into lithium layers induced by the overlithiation, allowing the intercalation of overstoichiometric Li+ into the crystal without the O3 framework change. Based on this, the wide-potential cycling stability is further improved via a facile charge-discharge protocol. This work provides deep insight into the overstoichiometric Li+ storage behaviors in conventional layered cathodes and opens a new avenue toward high-energy batteries.

8.
J Phys Chem B ; 128(15): 3732-3741, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38568211

RESUMEN

Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.

9.
Plant J ; 118(6): 2108-2123, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526880

RESUMEN

Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.


Asunto(s)
Genes de Plantas , Oryza , Fitomejoramiento , Proteínas de Plantas , Alelos , Genotipo , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fenotipo , Fotoperiodo , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Angew Chem Int Ed Engl ; 63(20): e202403260, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38503695

RESUMEN

The poisoning of undesired intermediates or impurities greatly hinders the catalytic performances of noble metal-based catalysts. Herein, high-entropy intermetallics i-(PtPdIrRu)2FeCu (HEI) are constructed to inhibit the strongly adsorbed carbon monoxide intermediates (CO*) during the formic acid oxidation reaction. As probed by multiple-scaled structural characterizations, HEI nanoparticles are featured with partially negative Pt oxidation states, diluted Pt/Pd/Ir/Ru atomic sites and ultrasmall average size less than 2 nm. Benefiting from the optimized structures, HEI nanoparticles deliver more than 10 times promotion in intrinsic activity than that of pure Pt, and well-enhanced mass activity/durability than that of ternary i-Pt2FeCu intermetallics counterpart. In situ infrared spectroscopy manifests that both bridge and top CO* are favored on pure Pt but limited on HEI. Further theoretical elaboration indicates that HEI displayed a much weaker binding of CO* on Pt sites and sluggish diffusion of CO* among different sites, in contrast to pure Pt that CO* bound more strongly and was easy to diffuse on larger Pt atomic ensembles. This work verifies that HEIs are promising catalysts via integrating the merits of intermetallics and high-entropy alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA