Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Biol Chem ; 300(9): 107690, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159807

RESUMEN

Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both mitochondrial biogenesis and mitochondrial function are iron-dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g., Tfr1 and Hfe) are involved in cold-induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-)-deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and adipose triglyceride lipase, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or stromal vascular fractions from WT mice supplemented with iron citrate) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.


Asunto(s)
Adipocitos , Proteína de la Hemocromatosis , Hierro , Lipólisis , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Termogénesis , Animales , Termogénesis/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Lipólisis/efectos de los fármacos , Hierro/metabolismo , Adipocitos/metabolismo , Proteína de la Hemocromatosis/metabolismo , Proteína de la Hemocromatosis/genética , Mitocondrias/metabolismo , Masculino , Biogénesis de Organelos , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Ratones Endogámicos C57BL
2.
Cell Signal ; 117: 111097, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38355078

RESUMEN

Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Regeneración , Ondas Ultrasónicas , Proteínas Quinasas Activadas por AMP/metabolismo , Diferenciación Celular , Proliferación Celular , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Ratones , Células Cultivadas
3.
Sci China Life Sci ; 66(9): 1952-1975, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515687

RESUMEN

The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.


Asunto(s)
Microbioma Gastrointestinal , Animales , Humanos , Bacterias/metabolismo , Homeostasis , Obesidad , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA