Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(21): 24957-24965, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009938

RESUMEN

The size effects of metal catalysts have been widely investigated to optimize their catalytic activity and selectivity. However, the size-controllable synthesis of uniform supported metal nanoparticles without surfactants and/or additives remains a great challenge. Herein, we developed a green, surfactant-free, and universal strategy to tailor the sizes of uniform Pd nanoparticles on metal oxides by an electroless chemical deposition method via defect engineering of supports. The nucleation and growth mechanism suggest a strong electrostatic interaction between the Pd precursor and low-defective CeO2 and a weak reducing capacity for low-defective CeO2, resulting in small Pd nanoparticles. Conversely, large Pd nanoparticles were formed on a highly defective CeO2 surface. Combined with various ex situ and in situ characterizations, a higher intrinsic activity of Pd for the CO2-to-CO hydrogenation was found on large Pd nanoparticles with higher electron density owing to their stronger H2 dissociation ability and H-spillover effects, as well as the larger number of oxygen vacancies generated in situ for CO2 activation under hydrogenation conditions.

2.
Nat Commun ; 12(1): 2305, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863884

RESUMEN

The selective hydrogenation of CO2 to value-added chemicals is attractive but still challenged by the high-performance catalyst. In this work, we report that gallium nitride (GaN) catalyzes the direct hydrogenation of CO2 to dimethyl ether (DME) with a CO-free selectivity of about 80%. The activity of GaN for the hydrogenation of CO2 is much higher than that for the hydrogenation of CO although the product distribution is very similar. The steady-state and transient experimental results, spectroscopic studies, and density functional theory calculations rigorously reveal that DME is produced as the primary product via the methyl and formate intermediates, which are formed over different planes of GaN with similar activation energies. This essentially differs from the traditional DME synthesis via the methanol intermediate over a hybrid catalyst. The present work offers a different catalyst capable of the direct hydrogenation of CO2 to DME and thus enriches the chemistry for CO2 transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA