Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(5): e17273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265168

RESUMEN

The growing threat of global warming on coral reefs underscores the urgency of identifying heat-tolerant corals and discovering their adaptation mechanisms to high temperatures. Corals growing in intertidal rock pools that vary markedly in daily temperature may have improved heat tolerance. In this study, heat stress experiments were performed on scleractinian coral Porites lutea from subtidal habitat and intertidal rock pool of Weizhou Island in the northern South China Sea. Thermotolerance differences in corals from the two habitats and their mechanisms were explored through phenotype, physiological indicators, ITS2, 16S rRNA, and RNA sequencing. At the extremely high temperature of 34°C, rock pool P. lutea had a stronger heat tolerance than those in the subtidal habitat. The strong antioxidant capacity of the coral host and its microbial partners was important in the resistance of rock pool corals to high temperatures. The host of rock pool corals at 34°C had stronger immune and apoptotic regulation, downregulated host metabolism and disease-infection-related pathways compared to the subtidal habitat. P. lutea, in this habitat, upregulated Cladocopium C15 (Symbiodiniaceae) photosynthetic efficiency and photoprotection, and significantly increased bacterial diversity and coral probiotics, including ABY1, Ruegeria, and Alteromonas. These findings indicate that rock pool corals can tolerate high temperatures through the integrated response of coral holobionts. These corals may be 'touchstones' for future warming. Our research provides new insights into the complex mechanisms by which corals resist global warming and the theoretical basis for coral reef ecosystem restoration and selection of stress-resistant coral populations.


Asunto(s)
Antozoos , Rhodobacteraceae , Animales , Antozoos/fisiología , Ecosistema , ARN Ribosómico 16S/genética , Arrecifes de Coral , Rhodobacteraceae/genética , Simbiosis
2.
Mar Pollut Bull ; 193: 115147, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331272

RESUMEN

Under the dual effects of climate change and anthropogenic activities, coral reefs in the South China Sea (SCS) are at serious risk of degradation. Galaxea fascicularis is a widely distributed species in the SCS, and the study of its genetics, survival, and adaptability is conducive to further understanding the future characteristics of coral reefs in the SCS. In this study, 146 G. fascicularis samples were selected from 9 survey stations across 12 latitudes in the SCS, and 8 pairs of microsatellite markers were used to characterize their genetic diversity and structure. The results showed moderate genetic diversity index values (Ar = 3.444-4.147, He = 0.634-0.782, Ho = 0.367-0.586). The AMOVA results and pairwise FST values showed a moderate level of genetic differentiation (ΦST = 0.119, P < 0.05) among G. fascicularis populations in the SCS, whereas its genetic structure showed high genetic differentiation (FST = 0.062-0.225) among relatively high-latitude populations (n = 3) and low genetic differentiation (FST = 0.012-0.064) in low-latitude populations (n = 6). The living environment of relatively high-latitude populations is disturbed by high-intensity human activities, leading to the specialization of local populations. Mantel test results showed a significant positive correlation between genetic differentiation among G. fascicularis populations and sea surface temperature (SST) variance (R2 = 0.4885; Mantel test, p = 0.010 < 0.05) in addition to geographical distance (R2 = 0.1134; Mantel, test p = 0.040 < 0.05), indicating that SST and geographical isolation were primary factors affecting the genetic structure of this species in the SCS. The lower genetic diversity and limited gene flow of G. fascicularis indicate limited genetic adaptation, and corresponding vulnerability may be more pronounced under future environmental changes. These findings provide a theoretical basis for the conservation and restoration of coral reefs in the SCS.


Asunto(s)
Antozoos , Animales , Humanos , Antozoos/genética , Flujo Génico , Arrecifes de Coral , China , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA