Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Environ Res ; 263(Pt 1): 120043, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307224

RESUMEN

The biochar-loaded Fe-Cu layered double hydroxide (FeCu-LDH@BC) catalyst was synthesized via a simple hydrothermal method and used to activate peroxydisulfate (PDS) for penicillin G (PG) degradation under visible light. The physicochemical properties of FeCu-LDH@BC were characterized using SEM, XPS, UV-DRS, SEM-EDS, HRTEM, XRD, BET, PL spectrum, FT-IR, Raman spectrum, TG-DSC, TPD, and EIS, showing that biochar (BC) enhanced the optical properties of FeCu-LDH. Notably, the FeCu-LDH@BC + PDS + Light system achieved a 98.79% degradation efficiency for PG in just 10 min. Furthermore, FeCu-LDH@BC retained excellent activity after four reuse cycles. LSV results indicated enhanced electron transfer in the FeCu-LDH@BC + PDS + Light system, suggesting a synergistic effect between the photocatalytic and PDS activation systems. The interconversion of h+, SO4·â», 1O2, and ·OH species was found to play a key role in PG degradation. Density functional theory was used to identify PG sites susceptible to radical attack, and the possible degradation pathway was proposed based on liquid chromatography-mass spectrometry results. Toxicity evaluation using the TEST software confirmed that the intermediates formed were significantly less toxic than PG. Lastly, the FeCu-LDH@BC + PDS + Light system removed 37.45% of total organic carbon and 63.74% of chemical oxygen demand from real wastewater within 120 min. The type and transformation pathways of organic matter in the wastewater were analyzed using 3D Excitation Emission Matrix spectroscopy to assess the system's application potential.

2.
J Hazard Mater ; 480: 135818, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39307017

RESUMEN

Polysaccharides with various molecular structures and morphology may influence the aggregation kinetics of nanoplastics. This study used various characterization methods to elucidate the heteroaggregation mechanism of polystyrene nanoplastics (PSNPs) in the presence of polysaccharides (ionic strength (IS) 1-800 mM NaCl and 0.01-60 mM CaCl2). The results showed that under high IS, cellulose (CL) accelerated the heteroaggregation of PSNPs, and the aggregation rate of PSNPs increased by approximately 62.05 %, while amylose (AM) had little effect (10.38 %). Compared with AM (43.2 nm), the morphology of the CL (78.4 nm) gully had improved surface roughness, leading to its decisive role in the heteroaggregation of PSNPs. Quantum chemistry calculations indicated that van der Waals forces of PSNPs-CL systems (-217.28 kJ mol-1) were stronger than those of PSNPs-AM systems (-184.62 kJ mol-1) based on the subtle molecular conformation differences between CL and AM (opposite and same sides of OH groups in CL and AM, respectively). The morphology and molecular conformation of polysaccharides collaboratively controlled the heteroaggregation of PSNPs. Because the morphology of polysaccharides was based on their molecular conformation, the latter is the most critical factor. These findings provide new insights into the effects of PSNPs stability in the environment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39287959

RESUMEN

Cobalt-based sulfides (CSs) are generally regarded as potentially valuable anode materials for sodium-ion batteries (SIBs) due to their excellent theoretical capacity and natural abundance. Nevertheless, their slow reaction kinetics and poor structural stability restrict the practical application of the materials. In this study, the dual-carbon-confined Se-CoS2@NC@C hollow nanocubes with anion doping are synthesized using ZIF-67 as the substrate by resorcin-formaldehyde (RF) encapsulation and subsequent carbonization and sulfurization/selenization. RF- and ZIF-67-derived dual-carbon skeleton hollow structures with a robust carbon skeleton and abundant internal space minimize cyclic stress, mitigate volume changes and maintain the structural integrity of the material. More importantly, Se doping increases the lattice spacing of CoS2, weakens the strength of Co-S bonds, and modulates the electronic structure around Co atoms, thereby optimizing the adsorption energy of the material. As a result, the hollow nanocubes of Se-CoS2@NC@C demonstrates excellent electrochemical performance as the anode for SIBs, delivering a high reversible capacity of 549.4 mAh g-1 at 0.5 A g-1 after 100 cycles and a superb rate performance (541.1 mAh g-1 at 0.2  A  g-1, and 393.3 mAh g-1 at 5 A g-1). This study proposes a neoteric strategy for synthesizing advanced anodes for SIBs through the synergy of anion doping engineering and dual-carbon confinement strategy.

4.
J Hazard Mater ; 478: 135445, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116743

RESUMEN

Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.

5.
Chemosphere ; 364: 143021, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111676

RESUMEN

Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.


Asunto(s)
Cromo , Disulfuros , Molibdeno , Azufre , Molibdeno/química , Cromo/química , Disulfuros/química , Catálisis , Azufre/química , Adsorción , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química
6.
Nat Commun ; 15(1): 6688, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107273

RESUMEN

Human society is facing increasingly serious problems of environmental pollution and energy shortage, and up to now, achieving high NH3-SCR activity at ultra-low temperatures (<150 °C) remains challenging for the V-based catalysts with V content below 2%. In this study, the monoatomic V-based catalyst under the weak current-assisted strategy can completely convert NOx into N2 at ultra-low temperature with V content of 1.36%, which shows the preeminent turnover frequencies (TOF145 °C = 1.97×10-3 s-1). The improvement of catalytic performance is mainly attributed to the enhancement catalysis of weak current (ECWC) rather than electric field, which significantly reduce the energy consumption of the catalytic system by more than 90%. The further mechanism research for the ECWC based on a series of weak current-assisted characterization means and DFT calculations confirms that migrated electrons mainly concentrate around the V single atoms and increase the proportion of antibonding orbitals, which make the V-O chemical bond weaker (electron scissors effect) and thus accelerate oxygen circulation. The novel current-assisted catalysis in the present work can potentially apply to other environmental and energy fields.

7.
Int J Biol Macromol ; 277(Pt 2): 134155, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098462

RESUMEN

N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.


Asunto(s)
Carbono , Pectinas , Serina , Titanio , Pectinas/química , Titanio/química , Carbono/química , Serina/química , Nitrógeno/química , Catálisis , Fotólisis , Porosidad , Azul de Metileno/química
8.
Adv Sci (Weinh) ; : e2406149, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120124

RESUMEN

Engineering multimetallic nanocatalysts with the entropy-mediated strategy to reduce reaction activation energy is regarded as an innovative and effective approach to facilitate efficient heterogeneous catalysis. Accordingly, conformational entropy-driven high-entropy alloys (HEAs) are emerging as a promising candidate to settle the catalytic efficiency limitations of nanozymes, attributed to their versatile active site compositions and synergistic effects. As proof of the high-entropy nanozymes (HEzymes) concept, elaborate PdMoPtCoNi HEA nanowires (NWs) with abundant active sites and tuned electronic structures, exhibiting peroxidase-mimicking activity comparable to that of natural horseradish peroxidase are reported. Density functional theory calculations demonstrate that the enhanced electron abundance of HEA NWs near the Fermi level (EF) is facilitated via the self-complementation effect among the diverse transition metal sites, thereby boosting the electron transfer efficiency at the catalytic interface through the cocktail effect. Subsequently, the HEzymes are integrated with a portable electronic device that utilizes Internet of Things-driven signal conversion and wireless transmission functions for point-of-care diagnosis to validate their applicability in digital biosensing of urinary biomarkers. The proposed HEzymes underscore significant potential in enhancing nanozymes catalysis through tunable electronic structures and synergistic effects, paving the way for reformative advancements in nano-bio analysis.

9.
Int J Biol Macromol ; 277(Pt 3): 134485, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102926

RESUMEN

The blood glucose concentration in aquatic organisms, a crucial indicator reflecting their health status, holds significant importance for detecting glucose levels in serum in terms of processing and quality monitoring. In this study, a novel POD biomimetic enzyme (p-BEs) with horseradish peroxidase catalytic properties was designed, optimized, and its mechanism was discussed in detail. Based on this, a portable system has been developed capable of determining glucose levels in three ways: quantitatively analyzed through UV-Vis/MD, quantitatively analyzed on-site using a mobile phone RGB, and semi-quantitatively analyzed through a drip plate. Meanwhile, compared with other catalytic methods for detecting glucose, we achieved a lower limit of detection (0.03 µM) and shorter detection time (12 min), with high catalytic activity. This study provides new insights into the design of efficient and reliable cascade catalytic systems responsive to glucose, offering a low-cost, simplicity of operation method for glucose detection.


Asunto(s)
Técnicas Biosensibles , Peroxidasa de Rábano Silvestre , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Glucosa/análisis , Glucemia/análisis , Catálisis , Materiales Biomiméticos/química , Límite de Detección , Biomimética/métodos , Biocatálisis
10.
ACS Omega ; 9(26): 27932-27944, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973852

RESUMEN

Recent studies have identified butanone as a promising biomarker in the breath of lung cancer patients, yet the understanding of its gas-sensing properties remains limited. A key challenge has been to enhance the gas-sensing performance of materials toward butanone, particularly under ultraviolet light exposure. Herein, we report the synthesis of a novel three-dimensional composite material composed of SnO2 incorporated with Bi2O3 using facile hydrothermal and impregnation precipitation methods. Detailed physical and chemical characterizations were performed to assess the properties of the developed material. Upon activation with ultraviolet light, our composite exhibited exceptionally high sensitivity to butanone. Remarkably, the butanone response was nearly 3 times greater for the Bi2O3-loaded SnO2 composite than for pristine SnO2, achieving a response value of 70. This substantial improvement is due to the synergistic effect of the material's distinctive three-dimensional architecture and the presence of Bi2O3, which significantly augmented the gas-sensing capability of butanone. To elucidate the underlying gas-sensing mechanism, we conducted first-principles calculations using density functional theory (DFT). The computational analysis revealed that the Bi2O3-containing system possesses superior adsorption energy for butanone. Ultimately, our findings suggest that the Bi-SnO2 composite holds great promise as an optimal sensing material for the detection of butanone under ultraviolet illumination.

11.
Anal Chem ; 96(28): 11508-11515, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953489

RESUMEN

26% of the world's population lacks access to clean drinking water; clean water and sanitation are major global challenges highlighted by the UN Sustainable Development Goals, indicating water security in public water systems is at stake today. Water monitoring using precise instruments by skilled operators is one of the most promising solutions. Despite decades of research, the professionalism-convenience trade-off when monitoring ubiquitous metal ions remains the major challenge for public water safety. Thus, to overcome these disadvantages, an easy-to-use and highly sensitive visual method is desirable. Herein, an innovative strategy for one-to-nine metal detection is proposed, in which a novel thiourea spectroscopic probe with high 9-metal affinity is synthesized, acting as "one", and is detected based on the 9 metal-thiourea complexes within portable spectrometers in the public water field; this is accomplished by nonspecialized personnel as is also required. During the processing of multimetal analysis, issues arise due to signal overlap and reproducibility problems, leading to constrained sensitivity. In this innovative endeavor, machine learning (ML) algorithms were employed to extract key features from the composite spectral signature, addressing multipeak overlap, and completing the detection within 30-300 s, thus achieving a detection limit of 0.01 mg/L and meeting established conventional water quality standards. This method provides a convenient approach for public drinking water safety testing.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Tiourea/química , Análisis Espectral/métodos , Aprendizaje Automático
12.
J Environ Manage ; 366: 121799, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991347

RESUMEN

Synthesizing cubic spinel Cu2MnO4 with nanosheet structure (SCMO) aimed to construct a "non-radical-mediated radical-oxidative reaction", for increasing PMS utilization efficiency, and solving the defects of SO4•- and •OH through indirect PMS activation by electron transfer process. Compared with box-like Cu2MnO4 (11.1%, 0.0035 min-1) and ordinary Cu2MnO4 nanoparticles (21.3%, 0.0070 min-1), SCMO/PMS showed excellent trichloroethylene removal (98.8%, 0.1577 min-1). The pivotal role of Cu(III) was determined based on EPR analysis, quenching experiments, chemical probe experiments, hydrogen temperature-programmed reduction and Raman spectroscopy analysis, in-situ FTIR and Raman analyses. In brief, the interaction between PMS and SCMO could produce surface-bonded reactive complexes and the subsequent breaking of O-O bond in the sub-stable structure allowed the conversion of Cu(II) to Cu(III), which in turn facilitates the generation of •OH and SO4•-. The density functional theory (DFT) calculations provided supporting evidence for the electron donor role of SCMO and the increase of the electron acceptance capacity of PMS. SCMO/PMS system showed good resistance and degradation efficiency to complex composition and combined pollutants in actually contaminated groundwater, respectively. However, the coexistence of high concentrations of arsenic could significantly affect SCMO performance due to their adsorption on -OH groups, which still need in-depth study.


Asunto(s)
Tricloroetileno , Tricloroetileno/química , Catálisis , Radicales Libres/química , Nanopartículas/química , Cobre/química , Peróxidos/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química
13.
ACS Appl Mater Interfaces ; 16(32): 42080-42092, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078413

RESUMEN

As an atom-economical reaction, the direct generation of dimethyl carbonate (DMC) and ethylene glycol (EG) via the transesterification of CH3OH and ethylene carbonate (EC) has several promising applications, but the exploration of carriers with high specific surface areas and novel heterogeneous catalysts with more basic sites remains a long-standing research challenge. For this purpose, herein, a nitrogen-doped mesoporous carbon (NMC, 439 m2/g) based K-O2 Lewis base catalyst (K-O2/NMC) with well-dispersed strongly basic sites (2.23 mmol/g, 84.5%) was designed and synthesized. The compositions and structures of NMC and K-O2/NMC were comprehensively investigated via Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, CO2 temperature-programmed desorption, and contact angle measurements. The optimal structural configuration and electron cloud distribution of the K-O2/NMC catalyst were simulated using first-principles calculations. The electron transfer predominantly manifested as a flow from K-O to C-O/C-N, and the interatomic interactions between each atom were enhanced and exhibited a tendency for a more stable state after redistribution. Furthermore, the adsorption energies (Eads) of CH3OH at K-O-O and K-O-N sites were -1.4185 eV and -1.3377 eV, respectively, and the O atom in CH3OH exhibited a stronger adsorption tendency for the K atom at the K-O-O site. Under the optimal conditions, the EC conversion, DMC/EG selectivity, and turnover number/frequency were 80.9%, 98.6%/99.4%, and 40.5/60.8 h-1, respectively, with a reaction rate constant (k) of 0.1005 mol/(L·min). Results showed that the heterogeneous K-O2/NMC catalyst prepared herein greatly reduced the reaction cost while guaranteeing the catalytic effect, and the whole system required a lower reaction temperature (65 °C), a shorter reaction time (40 min), and a lower catalyst amount (2.0 wt % of EC). Therefore, K-O2/NMC can be used as a catalyst in different transesterification reactions.

14.
Nat Commun ; 15(1): 6428, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39079956

RESUMEN

Complicated peripheral nerve injuries or defects, especially at branching sites, remain a prominent clinical challenge after the application of different treatment strategies. Current nerve grafts fail to match the expected shape and size for delicate and precise branched nerve repair on a case-by-case basis, and there is a lack of geometrical and microscale regenerative navigation. In this study, we develop a sugar painting-inspired individualized multilevel epi-/peri-/endoneurium-mimetic device (SpinMed) to customize natural cues, featuring a selectively protective outer sheath and an instructive core, to support rapid vascular reconstruction and consequent efficient neurite extension along the defect area. The biomimetic perineurium dictates host-guest crosslinking in which new vessels secrete multimerin 1 binding to the fibroin filler surface as an anchor, contributing to the biological endoneurium that promotes Schwann cell homing and remyelination. SpinMed implantation into rat sciatic nerve defects yields a satisfactory outcome in terms of structural reconstruction, with sensory and locomotive function restoration. We further customize SpinMed grafts based on anatomy and digital imaging, achieving rapid repair of the nerve trunk and branches superior to that achieved by autografts and decellularized grafts in a specific beagle nerve defect model, with reliable biosafety. Overall, this intelligent art-inspired biomimetic design offers a facile way to customize sophisticated high-performance nerve grafts and holds great potential for application in translational regenerative medicine.


Asunto(s)
Regeneración Nerviosa , Células de Schwann , Nervio Ciático , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Células de Schwann/metabolismo , Perros , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/cirugía , Ratas Sprague-Dawley , Masculino , Andamios del Tejido/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Biomimética/métodos , Fibroínas/química , Fibroínas/farmacología , Ingeniería de Tejidos/métodos
15.
J Colloid Interface Sci ; 675: 947-957, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39002244

RESUMEN

Enhancing the generation of reactive hydroxyl radicals (•OH) is crucial for overcoming the limitations of the low reactivity of heterogeneous Fenton Fe-based catalysts. Researchers have explored various methods to modify catalyst structures to enhance reactivity, yet often at the expense of stability. Herein, suitable carbon and nitrogen-codoped Fe2O3-CuO composites were synthesized via pyrolysis method, demonstrating high Fenton reaction activity and remarkable stability. Experimental findings and density functional theory calculations (DFT) revealed that the presence of oxygen vacancies on the catalyst surface facilitated an increase in exposed FeNC active sites, promoting electron transfer and the accelerating the rate of •OH generation. Moreover, carbon and nitrogen, particularly in the form of pyrrole nitrogen bonded to Fe imparted exceptional stability to the FeNC active sites, mitigating their dissolution. Additionally, the Fe-based catalysts exhibited strong magnetism, enabling easy separation from the reaction solution while maintaining a high degradation efficiency for various organic pollutants, even in the presence of multiple anions. Furthermore, a comprehensive mechanism for methylene blue (MB) degradation was identified, enhancing the potential practical applications of these catalysts.

16.
J Hazard Mater ; 477: 135288, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047564

RESUMEN

In this work, a novel CuMn-Sb-SnO2 anode is developed by a simple, low-cost preparation process. The doping of Cu and Mn causes surface reconstruction, which optimizes its electronic structure, compared to the Sb-SnO2 anode. Experimental results demonstrate that the levofloxacin degradation kinetics constant in the CuMn-Sb-SnO2 system (0.188 min-1) was 8.5 times higher than that in the Sb-SnO2 system, which is surpassing most reported anodes. Moreover, electrochemical characterization also revealed that the CuMn-Sb-SnO2 anode possessed more active sites, higher OEP potential, and lower charge transfer resistance. Notably, electrochemical characterization and EPR experiments confirmed the formation of Cu (III), highlighting their crucial role in promoting the generation of •OH during the catalytic process. Additionally, theoretical calculations and XPS analysis revealed that Cu and Mn rely on self-mediated redox shuttles to act as "electron porters", significantly accelerating internal electron transfer between Sn and Sb to enhance the production of •OH. Furthermore, the CuMn-Sb-SnO2 anode exhibits great practicability due to its efficient degradation of various antibiotics. This study offers valuable new insights into developing novel electrodes for the efficient degradation of antibiotic wastewater.

17.
Nat Commun ; 15(1): 6437, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085264

RESUMEN

Carbon materials with defect-rich structure are highly demanded for various electrochemical scenes, but encountering a conflict with the deteriorative intrinsic conductivity. Herein, we build a highway-mediated nanoarchitecture that consists of the ordered pseudographitic nanodomains among disordered highly nitrogen-doped segments through a supramolecular self-assembly strategy. The "order-in-disorder" nanosheet-like carbon obtained at 800 °C (O/D NSLC-800) achieves a tradeoff with high defect degree (21.9 at% of doped nitrogen) and compensated electrical conductivity simultaneously. As expected, symmetrical O/D NSLC-800 electrodes exhibit superior capacitive deionization (CDI) performance, including brackish water desalination (≈82 mgNaCl g-1 at a cell voltage of 1.6 V in a 1000 mg L-1 NaCl solution) and reusage of actual refining circulating cooling water, outperforming most of the reported state-of-the-art CDI electrodes. The implanted pseudographitic nanodomains lower the resistance and activation energy of charge transfer, which motivates the synergy of hosting sites of multiple nitrogen configurations. Our findings shed light on electrically conductive nanoarchitecture design of defect-rich materials for advanced electrochemical applications based on molecular-level modulation.

18.
Nat Commun ; 15(1): 4951, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858393

RESUMEN

Developing stable, high-performance chloride-ion storage electrodes is essential for energy storage and water purification application. Herein, a P, S co-doped porous hollow nanotube array, with a free ion diffusion pathway and highly active adsorption sites, on carbon felt electrodes (CoNiPS@CF) is reported. Due to the porous hollow nanotube structure and synergistic effect of P, S co-doped, the CoNiPS@CF based capacitive deionization (CDI) system exhibits high desalination capacity (76.1 mgCl- g-1), fast desalination rate (6.33 mgCl- g-1 min-1) and good cycling stability (capacity retention rate of > 90%), which compares favorably to the state-of-the-art electrodes. The porous hollow nanotube structure enables fast ion diffusion kinetics due to the swift ion transport inside the electrode and the presence of a large number of reactive sites. The introduction of S element also reduces the passivation layer on the surface of CoNiP and lowers the adsorption energy for Cl- capture, thereby improving the electrode conductivity and surface electrochemical activity, and further accelerating the adsorption kinetics. Our results offer a powerful strategy to improve the reactivity and stability of transition metal phosphides for chloride capture, and to improve the efficiency of electrochemical dechlorination technologies.

19.
Environ Sci Technol ; 58(26): 11748-11759, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38912726

RESUMEN

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.


Asunto(s)
Plomo , Fosfatos , Plomo/química , Fosfatos/química , Compuestos de Hierro/química , Minerales/química , Concentración de Iones de Hidrógeno , Adsorción
20.
Water Res ; 260: 121966, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908312

RESUMEN

The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.


Asunto(s)
Antibacterianos , Floculación , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Antibacterianos/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA