RESUMEN
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Asunto(s)
Apoptosis , Calcio , Enfermedades Cardiovasculares , Receptores de Inositol 1,4,5-Trifosfato , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Animales , Calcio/metabolismo , Señalización del CalcioRESUMEN
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.
Asunto(s)
Cardiomiopatías , Distrofina , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolípidos , Utrofina , Animales , Masculino , Ratones , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Mitocondrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteolípidos/metabolismo , Proteolípidos/genética , Utrofina/genética , Utrofina/metabolismoRESUMEN
The anti-apoptotic function of Bcl-xL in the heart during ischemia/reperfusion is diminished by K-Ras-Mst1-mediated phosphorylation of Ser14, which allows dissociation of Bcl-xL from Bax and promotes cardiomyocyte death. Here we show that Ser14 phosphorylation of Bcl-xL is also promoted by hemodynamic stress in the heart, through the H-Ras-ERK pathway. Bcl-xL Ser14 phosphorylation-resistant knock-in male mice develop less cardiac hypertrophy and exhibit contractile dysfunction and increased mortality during acute pressure overload. Bcl-xL Ser14 phosphorylation enhances the Ca2+ transient by blocking the inhibitory interaction between Bcl-xL and IP3Rs, thereby promoting Ca2+ release and activation of the calcineurin-NFAT pathway, a Ca2+-dependent mechanism that promotes cardiac hypertrophy. These results suggest that phosphorylation of Bcl-xL at Ser14 in response to acute pressure overload plays an essential role in mediating compensatory hypertrophy by inducing the release of Bcl-xL from IP3Rs, alleviating the negative constraint of Bcl-xL upon the IP3R-NFAT pathway.
Asunto(s)
Calcio , Miocitos Cardíacos , Animales , Masculino , Ratones , Cardiomegalia , Sistema de Señalización de MAP Quinasas , FosforilaciónRESUMEN
Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the ß-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pretreatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability, greater plasma membrane depolarization, and Ca2+ overload, which likely caused prolonged action potentials, delayed after depolarizations, and triggered activity. All these cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac-stress-induced arrhythmogenicity.
Asunto(s)
Cardiomiopatías , Conexina 43 , Ratones , Animales , Conexina 43/genética , Conexina 43/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Uniones Comunicantes , Canales Iónicos/metabolismo , IsoproterenolRESUMEN
Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.
Asunto(s)
Cardiopatías , Sobrecarga de Hierro , Ratones , Animales , Miocitos Cardíacos , Sobrecarga de Hierro/complicaciones , Hierro , CalcioRESUMEN
Dilated cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), an inherited degenerative disease of the cardiac and skeletal muscle caused by absence of the protein dystrophin. We showed one hallmark of DMD cardiomyopathy is the dysregulation of cardiac gap junction channel protein connexin-43 (Cx43). Proper Cx43 localization and function at the cardiac intercalated disc (ID) is regulated by post-translational phosphorylation of Cx43-carboxy-terminus residues S325/S328/S330 (pS-Cx43). Concurrently, Cx43 traffics along microtubules (MTs) for targeted delivery to the ID. In DMD hearts, absence of dystrophin results in a hyperdensified and disorganized MT cytoskeleton, yet the link with pS-Cx43 remains unaddressed. To gain insight into the relationship between MTs and pS-Cx43, DMD mice (mdx) and pS-Cx43-deficient (mdxS3A) mice were treated with an inhibitor of MT polymerization, colchicine (Colch). Colch treatment protected mdx, not mdxS3A mice, against Cx43 remodeling, improved MT directionality, and enhanced pS-Cx43/tubulin interaction. Likewise, severe arrhythmias were prevented in isoproterenol-stressed mdx, not mdxS3A mice. Furthermore, MT directionality was improved in pS-Cx43-mimicking mdx (mdxS3E). Mdxutr+/- and mdxutr+/-S3A mice, lacking one copy of dystrophin homolog utrophin, displayed enhanced cardiac fibrosis and reduced lifespan compared with mdxutr+/-S3E; and Colch treatment corrected cardiac fibrosis in mdxutr+/- but not mdxutr+/-S3A. Collectively, the data suggest that improved MT directionality reduces Cx43 remodeling and that pS-Cx43 is necessary and sufficient to regulate MT organization, which plays crucial role in correcting cardiac dysfunction in DMD mice. Thus, identification of novel organizational mechanisms acting on pS-Cx43-MT will help develop novel cardioprotective therapies for DMD cardiomyopathy.NEW & NOTEWORTHY We found that colchicine administration to Cx43-phospho-deficient dystrophic mice fails to protect against Cx43 remodeling. Conversely, Cx43-phospho-mimic dystrophic mice display a normalized MT network. We envision a bidirectional regulation whereby correction of the dystrophic MTs leads to correction of Cx43 remodeling, which in turn leads to further correction of the MTs. Our findings suggest a link between phospho-Cx43 and MTs that provides strong foundations for novel therapeutics in DMD cardiomyopathy.
Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Conexina 43/genética , Conexina 43/metabolismo , Ratones Endogámicos mdx , Modelos Animales de Enfermedad , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevención & control , Cardiomiopatías/genética , Cardiomiopatías/prevención & control , Microtúbulos/metabolismo , Colchicina , FibrosisRESUMEN
Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19-related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.
Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Ferroptosis , Daño por Reperfusión , Humanos , Hierro/metabolismo , Peroxidación de LípidoRESUMEN
Mitochondria fulfill the cell's energy demand and affect the intracellular calcium (Ca2+) dynamics via direct Ca2+ exchange, the redox effect of reactive oxygen species (ROS) on Ca2+ handling proteins, and other signaling pathways. Recent experimental evidence indicates that mitochondrial depolarization promotes arrhythmogenic delayed afterdepolarizations (DADs) in cardiac myocytes. However, the nonlinear interactions among the Ca2+ signaling pathways, ROS, and oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways make it difficult to reveal the mechanisms. Here, we use a recently developed spatiotemporal ventricular myocyte computer model, which consists of a 3-dimensional network of Ca2+ release units (CRUs) intertwined with mitochondria and integrates mitochondrial Ca2+ signaling and other complex signaling pathways, to study the mitochondrial regulation of DADs. With a systematic investigation of the synergistic or competing factors that affect the occurrence of Ca2+ waves and DADs during mitochondrial depolarization, we find that the direct redox effect of ROS on ryanodine receptors (RyRs) plays a critical role in promoting Ca2+ waves and DADs under the acute effect of mitochondrial depolarization. Furthermore, the upregulation of mitochondrial Ca2+ uniporter can promote DADs through Ca2+-dependent opening of mitochondrial permeability transition pores (mPTPs). Also, due to much slower dynamics than Ca2+ cycling and ROS, oxidized CaMKII activation and the cytosolic ATP do not appear to significantly impact the genesis of DADs during the acute phase of mitochondrial depolarization. However, under chronic conditions, ATP depletion suppresses and enhanced CaMKII activation promotes Ca2+ waves and DADs.
RESUMEN
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Asunto(s)
ATPasa de Ca(2+) y Mg(2+)/metabolismo , Calcio/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Contracción Miocárdica/fisiología , Retículo Sarcoplasmático/metabolismo , Adenosina Trifosfatasas/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Agonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Animales , Antioxidantes/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotónicos/farmacología , Dobutamina/farmacología , Dobutamina/uso terapéutico , Insuficiencia Cardíaca/fisiopatología , HumanosRESUMEN
Mitochondria are vital organelles inside the cell and contribute to intracellular calcium (Ca2+) dynamics directly and indirectly via calcium exchange, ATP generation, and production of reactive oxygen species (ROS). Arrhythmogenic Ca2+ alternans in cardiac myocytes has been observed in experiments under abnormal mitochondrial depolarization. However, complex signaling pathways and Ca2+ cycling between mitochondria and cytosol make it difficult in experiments to reveal the underlying mechanisms of Ca2+ alternans under abnormal mitochondrial depolarization. In this study, we use a newly developed spatiotemporal ventricular myocyte computer model that integrates mitochondrial Ca2+ cycling and complex signaling pathways to investigate the mechanisms of Ca2+ alternans during mitochondrial depolarization. We find that elevation of ROS in response to mitochondrial depolarization plays a critical role in promoting Ca2+ alternans. Further examination reveals that the redox effect of ROS on ryanodine receptors and sarco/endoplasmic reticulum Ca2+-ATPase synergistically promote alternans. Upregulation of mitochondrial Ca2+ uniporter promotes Ca2+ alternans via Ca2+-dependent mitochondrial permeability transition pore opening. Due to their relatively slow kinetics, oxidized Ca2+/calmodulin-dependent protein kinase II activation and ATP do not play significant roles acutely in the genesis of Ca2+ alternans after mitochondrial depolarization, but their roles can be significant in the long term, mainly through their effects on sarco/endoplasmic reticulum Ca2+-ATPase activity. In conclusion, mitochondrial depolarization promotes Ca2+ alternans acutely via the redox effect of ROS and chronically by ATP reduction. It suppresses Ca2+ alternans chronically through oxidized Ca2+/calmodulin-dependent protein kinase II activation.
Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas , Calcio/metabolismo , Mitocondrias/fisiología , Modelos Cardiovasculares , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Células Cultivadas , Biología Computacional , Simulación por Computador , Ventrículos Cardíacos/citología , Mitocondrias/enzimología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Conejos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca2+ (Ca2+i) handling in mouse left ventricular cardiomyocytes. METHODS: Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe3+/8-hydroxyquinoline complex (5-100 µM). Membrane potential and ionic currents including TRPC (transient receptor potential canonical) were recorded using the patch-clamp technique. Ca2+i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. RESULTS: We observed prolongation of the action potential duration and induction of early and delayed afterdepolarizations in myocytes superfused with 15 µmol/L Fe3+/8-hydroxyquinoline complex. Iron treatment decreased the peak amplitude of the L-type Ca2+ current and total K+ current, altered Ca2+i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca2+i waves and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished Ca2+i waves and restored the resting membrane potential to the normal range. The involvement of TRPC activation was confirmed by TRPC channel current recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same action potential and Ca2+i dynamics and provided additional mechanistic insights. CONCLUSIONS: We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca2+i dynamics.
Asunto(s)
Potenciales de Acción/fisiología , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Sobrecarga de Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Señalización del Calcio , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/fisiología , Miocitos Cardíacos/patología , Técnicas de Placa-ClampRESUMEN
Hibernation allows animals to enter an energy conserving state to survive severe drops in external temperatures and a shortage of food. It has been observed that the hearts of mammalian hibernators exhibit intrinsic protection against ischemia-reperfusion (I/R) injury and cardiac arrhythmias in the winter whether they are hibernating or not. However, the molecular and ionic mechanisms for cardioprotection in mammalian hibernators remain elusive. Recent studies in woodchucks (Marmota monax) have suggested that cardiac adaptation occurs at different levels and mediates an intrinsic cardioprotection prior to/in the winter. The molecular/cellular remodeling in the winter (with or without hibernation) includes (1) an upregulation of transcriptional factor, anti-apoptotic factor, nitric oxide synthase, protein kinase C-ε, and phosphatidylinositol-4,5-bisphosphate 3-kinase; (2) an upregulation of antioxidant enzymes (e.g. superoxide dismutase and catalase); (3) a reduction in the oxidation level of Ca2+/calmodulin-dependent protein kinase II (CaMKII); and (4) alterations in the expression and activity of multiple ion channels/transporters. Therefore, the cardioprotection against I/R injury in the winter is most likely mediated by enhancement in signaling pathways that are shared by preconditioning, reduced cell apoptosis, and increased detoxification of reactive oxygen species (ROS). The resistance to cardiac arrhythmias and sudden cardiac death in the winter is closely associated with an upregulation of the antioxidant catalase and a downregulation of CaMKII activation. This remodeling of the heart is associated with a reduction in the incidence of afterdepolarizations and triggered activities. In this short review article, we will discuss the seasonal changes in gene and protein expression profiles as well as alterations in the function of key proteins that are associated with the occurrence of cardioprotection against myocardial damage from ischemic events and fatal arrhythmias in a mammalian hibernator. Understanding the intrinsic cardiac adaptive mechanisms that confer cardioprotection in hibernators may offer new strategies to protect non-hibernating animals, especially humans, from I/R injury and ischemia-induced fatal cardiac arrhythmias.
Asunto(s)
Arritmias Cardíacas , Hibernación/fisiología , Daño por Reperfusión Miocárdica , AnimalesRESUMEN
Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.
Asunto(s)
Cardiomiopatías/prevención & control , Haploinsuficiencia , Proteínas Musculares/deficiencia , Distrofia Muscular de Duchenne/complicaciones , Miocardio/metabolismo , Proteolípidos/deficiencia , Animales , Apelina/genética , Apelina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocardio/patología , Necrosis , Proteolípidos/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Función Ventricular IzquierdaRESUMEN
Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a twofold change at time points up to 120 days relative to 12 days were subjected to ingenuity pathway analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1-α), the insulin receptor (IR), and the retinoblastoma protein (Rb1) transcriptional repressor. IPA and immunoblotting showed upregulation of the mitochondrial LonP1 protease-a regulator of mitochondrial proteostasis, energetics, and metabolism. LonP1 knockdown increased FAO in neonatal rat ventricular cardiomyocytes (nRVMs). Our results support the notion that LonP1 upregulation negatively regulates FAO in cardiomyocytes to calibrate the flux between glucose and fatty acid oxidation. We discuss potential mechanisms by which IR, Rb1, and LonP1 regulate the metabolic shift from glycolysis to OXPHOS and FAO. These newly identified factors and pathways may help in optimizing the maturation of iPSC-CMs.
Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Proteoma , Proteómica , Animales , Línea Celular , Linaje de la Célula , Metabolismo Energético , Humanos , Ratones , Mitocondrias Cardíacas/genética , Proteínas Mitocondriales/genética , Ratas , Factores de TiempoRESUMEN
Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.
RESUMEN
Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.
RESUMEN
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.
Asunto(s)
Señalización del Calcio , Cardiomiopatías/metabolismo , Conexina 43/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/patología , Conexina 43/genética , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Microtúbulos/genética , Microtúbulos/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Miocardio/patología , Miocitos Cardíacos/patología , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismoRESUMEN
Patients with Duchenne muscular dystrophy (DMD) commonly present with severe ventricular arrhythmias that contribute to heart failure. Arrhythmias and lethality are also consistently observed in adult Dmdmdx mice, a mouse model of DMD, after acute ß-adrenergic stimulation. These pathological features were previously linked to aberrant expression and remodeling of the cardiac gap junction protein connexin43 (Cx43). Here, we report that remodeled Cx43 protein forms Cx43 hemichannels in the lateral membrane of Dmdmdx cardiomyocytes and that the ß-adrenergic agonist isoproterenol (Iso) aberrantly activates these hemichannels. Block of Cx43 hemichannels or a reduction in Cx43 levels (using Dmdmdx Cx43+/- mice) prevents the abnormal increase in membrane permeability, plasma membrane depolarization, and Iso-evoked electrical activity in these cells. Additionally, Iso treatment promotes nitric oxide (NO) production and S-nitrosylation of Cx43 hemichannels in Dmdmdx heart. Importantly, inhibition of NO production prevents arrhythmias evoked by Iso. We found that NO directly activates Cx43 hemichannels by S-nitrosylation of cysteine at position 271. Our results demonstrate that opening of remodeled and S-nitrosylated Cx43 hemichannels plays a key role in the development of arrhythmias in DMD mice and that these channels may serve as therapeutic targets to prevent fatal arrhythmias in patients with DMD .
Asunto(s)
Arritmias Cardíacas/patología , Conexina 43/metabolismo , Distrofia Muscular de Duchenne/complicaciones , Miocitos Cardíacos/patología , Agonistas Adrenérgicos beta/toxicidad , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/patología , Permeabilidad de la Membrana Celular , Conexina 43/genética , Cisteína/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Potenciales Evocados/efectos de los fármacos , Humanos , Isoproterenol/toxicidad , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Distrofia Muscular de Duchenne/genética , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico/metabolismo , Oocitos , Técnicas de Placa-Clamp , Xenopus laevisRESUMEN
Intracellular calcium (Ca2+) cycling dynamics in cardiac myocytes are spatiotemporally generated by stochastic events arising from a spatially distributed network of coupled Ca2+ release units that interact with an intertwined mitochondrial network. In this study, we developed a spatiotemporal ventricular myocyte model that integrates mitochondria-related Ca2+ cycling components into our previously developed ventricular myocyte model consisting of a three-dimensional Ca2+ release unit network. Mathematical formulations of mitochondrial membrane potential, mitochondrial Ca2+ cycling, mitochondrial permeability transition pore stochastic opening and closing, intracellular reactive oxygen species signaling, and oxidized Ca2+/calmodulin-dependent protein kinase II signaling were incorporated into the model. We then used the model to simulate the effects of mitochondrial depolarization on mitochondrial Ca2+ cycling, Ca2+ spark frequency, and Ca2+ amplitude, which agree well with experimental data. We also simulated the effects of the strength of mitochondrial Ca2+ uniporters and their spatial localization on intracellular Ca2+ cycling properties, which substantially affected diastolic and systolic Ca2+ levels in the mitochondria but exhibited only a small effect on sarcoplasmic reticulum and cytosolic Ca2+ levels under normal conditions. We show that mitochondrial depolarization can cause Ca2+ waves and Ca2+ alternans, which agrees with previous experimental observations. We propose that this new, to our knowledge, spatiotemporal ventricular myocyte model, incorporating properties of mitochondrial Ca2+ cycling and reactive-oxygen-species-dependent signaling, will be useful for investigating the effects of mitochondria on intracellular Ca2+ cycling and action potential dynamics in ventricular myocytes.
Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/citología , Mitocondrias Cardíacas/metabolismo , Modelos Cardiovasculares , Miocitos Cardíacos/citología , Potenciales de Acción , Potencial de la Membrana Mitocondrial , Análisis Espacio-TemporalRESUMEN
Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD). Overexpression of SLN in C2C12 resulted in decreased SERCA pump activity, reduced SR Ca2+ load, and increased intracellular Ca2+ (Cai2+) concentration. In addition, SLN overexpression resulted in altered expression of myogenic markers and poor myogenic differentiation. In dystrophin-deficient dog myoblasts and myotubes, SLN expression was significantly high and associated with defective Cai2+ cycling. The dystrophic dog myotubes were less branched and associated with decreased autophagy and increased expression of mitochondrial fusion and fission proteins. Reduction in SLN expression restored these changes and enhanced dystrophic dog myoblast fusion during differentiation. In summary, our data suggest that SLN upregulation is an intrinsic secondary change in dystrophin-deficient myoblasts and could account for the Cai2+ mishandling, which subsequently contributes to poor myogenic differentiation. Accordingly, reducing SLN expression can improve the Cai2+ cycling and differentiation of dystrophic myoblasts. These findings provide cellular-level supports for targeting SLN expression as a therapeutic strategy for DMD.