Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Gene ; 893: 147930, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38381505

RESUMEN

Marsdenia tenacissima is a medicinal plant characterized by many flowers, few fruits, and a low fruit-setting rate. Exogenous auxins can improve the fruit-setting rate of plants; however, their impacts on M. tenacissima and regulatory mechanisms remain unclear. In this study, we conducted a field experiment to determine the fruit-setting rate, seed-setting rate, fruit size, and changes in transcriptional expression of related genes by spraying 10 and 50 mg·L-1 of 3-indoleacetic acid (IAA). The control plants were sprayed with distilled water. Our results indicated that the fruit-setting rate was 0.15 when treated with 10 mg·L-1 of IAA, which was 2.76-fold higher than that of the control. Compared with that of the control, the number of differentially expressed genes (DEGs) regulated by 10 mg·L-1 of IAA was 28.6-fold higher than that regulated by 50 mg·L-1 of IAA. These DEGs were closely related to hormone metabolism and fruit development. By transcriptome analysis, spraying 10 mg·L-1 of IAA increased the expressions of STP6, MYB17, and LAX3 and reduced those of CXE18, ILR1-like 3, and SAUR50; this possibly affected the ovule, embryo, and fruit development, thereby elevating the fruit-setting rate of M. tenacissima. Our results indicated that low IAA concentration increased the fruit-setting rate of M. tenacissima, providing theoretical and practical support for promoting the seed yield of M. tenacissima.


Asunto(s)
Aborto Inducido , Marsdenia , Femenino , Embarazo , Humanos , Frutas/genética , Ácidos Indolacéticos/farmacología
2.
J Appl Microbiol ; 133(5): 3126-3138, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35951725

RESUMEN

AIMS: Type 2 diabetes (T2D) is a chronic disease that manifests as endocrine and metabolic disorders that seriously threatening public health. This study aimed to investigate the effects of Bacillus sp. DU-106 on anti-diabetic effects and gut microbiota in C57BL/6J mice fed a high-fat diet and streptozotocin-induced T2D. METHODS AND RESULTS: Bacillus sp. DU-106 was administered to model mice for eight consecutive weeks. Oral administration of Bacillus sp. DU-106 decreased food and water intake and alleviated body weight loss. Moreover, Bacillus sp. DU-106 imparted several health benefits to mice, including balanced blood glucose, alleviation of insulin resistance in T2D mice and an improvement in lipid metabolism. Furthermore, Bacillus sp. DU-106 protected against liver and pancreatic impairment. Additionally, Bacillus sp. DU-106 treatment reshaped intestinal flora by enhancing gut microbial diversity and enriching the abundance of certain functional bacteria. CONCLUSION: Collectively, these findings suggest that Bacillus sp. DU-106 can ameliorate T2D by regulating the gut microbiota. SIGNIFICANCE AND IMPACT OF STUDY: Therefore, a novel probiotic, Bacillus sp. DU-106 may be a promising therapeutic agent for improving and alleviating T2D in mice.


Asunto(s)
Bacillus , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Glucemia , Bacillus/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
3.
Front Plant Sci ; 12: 663473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093621

RESUMEN

Photosynthetic and photoprotective responses to simulated sunflecks were examined in the shade-demanding crop Amorphophallus xiei intercropped with maize (intercropping condition) or grown in an adjacent open site (monoculture condition). Both intercropping leaves and monoculture leaves exhibited very fast induction responses. The times taken to achieve 90% maximum net photosynthetic rate in intercropping leaves and monoculture leaves were 198.3 ± 27.4 s and 223.7 ± 20.5 s during the photosynthetic induction, respectively. During an 8-min simulated sunfleck, the proportion of excess excited energy dissipated through the xanthophyll cycle-dependent pathway (Φ NPQ) and dissipated through constitutive thermal dissipation and the fluorescence (Φ f, d) pathway increased quickly to its maximum, and then plateaued slowly to a steady state in both intercropping and monoculture leaves. When the illumination was gradually increased within photosystem II (PSII), Φ NPQ increased quicker and to a higher level in monoculture leaves than in intercropping leaves. Relative to their monoculture counterparts, intercropping leaves exhibited a significantly lower accumulation of oxygen free radicals, a significantly higher content of chlorophyll, and a similar content of malondialdehyde. Although monoculture leaves exhibited a larger mass-based pool size of xanthophyll cycle [V (violaxanthin) + A (antheraxanthin) + Z (zeaxanthin)] than intercropping leaves, intercropping leaves had a higher ratio of (Z + A)/(V + Z + A) than monoculture leaves. intercropping leaves had markedly higher glutathione content and ascorbate-peroxidase activity than their monoculture counterparts. Similar activities of catalase, peroxidase, dehydroascorbate reductase, and monodehydroascorbate were found in both systems. Only superoxide dismutase activity and ascorbate content were lower in the intercropping leaves than in their monoculture counterparts. Overall, the xanthophyll cycle-dependent energy dissipation and the enzymatic antioxidant defense system are important for protecting plants from photooxidation in an intercropping system with intense sunflecks.

4.
Physiol Plant ; 167(4): 597-612, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30548605

RESUMEN

Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.


Asunto(s)
Panax notoginseng/genética , Latencia en las Plantas , Semillas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación
5.
Plant Divers ; 38(3): 163-170, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30159461

RESUMEN

Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz. is a rhizomatous, herbaceous, perennial plant that has been used for more than a thousand years in traditional Chinese medicine. It is facing extinction due to overharvesting. Steroids are the major therapeutic components in Paris roots, the commercial value of which increases with age. To date, no genomic data on the species have been available. In this study, transcriptome analysis of an 8-year-old root and a 4-year-old root provided insight into the metabolic pathways that generate the steroids. Using Illumina sequencing technology, we generated a high-quality sequence and demonstrated de novo assembly and annotation of genes in the absence of prior genome information. Approximately 87,577 unique sequences, with an average length of 614 bases, were obtained from the root cells. Using bioinformatics methods, we annotated approximately 65.51% of the unique sequences by conducting a similarity search with known genes in the National Center for Biotechnology Information's non-redundant database. The unique transcripts were functionally classified using the Gene Ontology hierarchy and the Kyoto Encyclopedia of Genes and Genomes database. Of 3082 genes that were identified as significantly differentially expressed between roots of different ages, 1518 (49.25%) were upregulated and 1564 (50.75%) were downregulated in the older root. Metabolic pathway analysis predicted that 25 unigenes were responsible for the biosynthesis of the saponins steroids. These data represent a valuable resource for future genomic studies on this endangered species and will be valuable for efforts to genetically engineer P. polyphylla and facilitate saponin-rich plant development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA