RESUMEN
Urothelial carcinoma (UC) refers to the malignancies originating from transitional epithelium located on the upper and lower urinary tract. Precise diagnosis of UC is crucial since it dictates the treatment efficacy and prognosis of UC patients. Conventional diagnostic approaches of UC mainly fall into four types, including liquid biopsy, imaging examination, endoscopic examination, and histopathological assessment, among others, each of them has contributed to a more accurate diagnosis of the condition. Therapeutically, UC is primarily managed through surgical intervention. In recent years, minimally invasive surgery (MIS) has been incrementally used and is showing superiority in terms of lowered perioperative morbidity and quicker recovery with similar oncological outcomes achieved. For advanced UC (aUC), medical therapy is dominant. While platinum-based chemotherapies are the standard first-line option for aUC, some novel treatment alternatives have recently been introduced, such as immune checkpoint inhibitors (ICIs), targeted therapies, and antibody-drug conjugates (ADCs). ADCs, a group of sophisticated biopharmaceutical agents consisting of monoclonal antibodies, cytotoxic payload, and linker, have been increasingly drawing the attention of clinicians. In this review, we synthesize the recent developments in the precise diagnosis of UC and provide an overview of the treatment options available, including MIS for UC and emerging medications, especially ADCs of aUC.
RESUMEN
Introduction: The epididymis is important for sperm transport, maturation, and storage. Methods: The head and tail of the epididymis of 5-week-old and 10-week-old C57 BL/6J male mice were used for single-cell sequencing. Results: 10 cell types including main, basal, and narrow/clear cells are identified. Next, we performed cell subgroup analysis, functional enrichment analysis, and differentiation potential prediction on principal cells, clear cells, and basal cells. Our study indicates that the principal cells are significantly involved in sperm maturation, as well as in antiviral and anti-tumor immune responses. Clear cells are likely to play a crucial role in safeguarding sperm and maintaining epididymal pH levels. Basal cells are implicated in the regulation of inflammatory and stress responses. The composition and functions of the various cell types within the epididymis undergo significant changes before and after sexual maturity. Furthermore, pseudo-temporal analysis elucidates the protective and supportive roles of epididymal cells in sperm maturation during sexual maturation. Discussion: This study offers a theoretical framework and forecasts for the investigation of epididymal sperm maturation and epididymal immunity.
RESUMEN
Thiophene is the organic sulfur with good thermal stability in carbon-based fuel, clarifying the conversion mechanism between thiophene and COS is beneficial for achieving in-situ sulfur fixation during CO2 gasification of carbon-based fuels, but the mechanism has rarely been reported. Therefore, calculations based on density functional theory were performed and 16 reaction paths were proposed in this research, clarifying the decomposition mechanism of thiophene and re-fixation mechanism of COS. The attachment of CO2 will lead to the destruction of the thiophene ring and the generation of COS, and CO2 adsorption is the rate-determined step, while the carbon atom that adjacent sulfur atom is the reaction active site. However, the energy barriers of CO2 addition reactions are lower than those of CO2 adsorption reactions, and the energy barrier of reactions occurring on the aliphatics are lower than that occurring on the aromatics. The combination of CO2 and thiophene will thermodynamically lead to the generation of COS and CO. Moreover, gaseous sulfur generated from thiophene decomposition will be converted mutually, while H2S will not be converted into COS. Furthermore, COS will be captured by char, forming solid organic sulfur. The re-fixation of COS will occur on aliphatic chains from the decomposition of aromatics.
RESUMEN
Background: Urine cytology is an important non-invasive examination for urothelial carcinoma (UC) diagnosis and follow-up. We aimed to explore whether artificial intelligence (AI) can enhance the sensitivity of urine cytology and help avoid unnecessary endoscopy. Methods: In this multicentre diagnostic study, consecutive patients who underwent liquid-based urine cytology examinations at four hospitals in China were included for model development and validation. Patients who declined surgery and lacked associated histopathology results, those diagnosed with rare subtype tumours of the urinary tract, or had low-quality images were excluded from the study. All liquid-based cytology slides were scanned into whole-slide images (WSIs) at 40 × magnification and the WSI-labels were derived from the corresponding histopathology results. The Precision Urine Cytology AI Solution (PUCAS) was composed of three distinct stages (patch extraction, features extraction, and classification diagnosis) and was trained to identify important WSI features associated with UC diagnosis. The diagnostic sensitivity was mainly used to validate the performance of PUCAS in retrospective and prospective validation cohorts. This study is registered with the ChiCTR, ChiCTR2300073192. Findings: Between January 1, 2018 and October 31, 2022, 2641 patients were retrospectively recruited in the training cohort, and 2335 in retrospective validation cohorts; 400 eligible patients were enrolled in the prospective validation cohort between July 7, 2023 and September 15, 2023. The sensitivity of PUCAS ranged from 0.922 (95% CI: 0.811-0.978) to 1.000 (0.782-1.000) in retrospective validation cohorts, and was 0.896 (0.837-0.939) in prospective validation cohort. The PUCAS model also exhibited a good performance in detecting malignancy within atypical urothelial cells cases, with a sensitivity of over 0.84. In the recurrence detection scenario, PUCAS could reduce 57.5% of endoscopy use with a negative predictive value of 96.4%. Interpretation: PUCAS may help to improve the sensitivity of urine cytology, reduce misdiagnoses of UC, avoid unnecessary endoscopy, and reduce the clinical burden in resource-limited areas. The further validation in other countries is needed. Funding: National Natural Science Foundation of China; Key Program of the National Natural Science Foundation of China; the National Science Foundation for Distinguished Young Scholars; the Science and Technology Planning Project of Guangdong Province; the National Key Research and Development Programme of China; Guangdong Provincial Clinical Research Centre for Urological Diseases.
RESUMEN
Klotho plays a critical role in the regulation of ion and fluid homeostasis. A previous study reported that haplo-insufficiency of Klotho in mice results in increased aldosterone synthase (CYP11B2) expression, elevated plasma aldosterone, and high blood pressure. This phenotype was presumed to be the result of diminished Klotho expression in zona glomerulosa (zG) cells of the adrenal cortex; however, systemic effects on adrenal aldosterone production could not be ruled out. To examine whether Klotho expressed in the zG is indeed a critical regulator of aldosterone synthesis, we generated a tamoxifen-inducible, zG-specific mouse model of Klotho deficiency by crossing Klotho-flox mice with Cyp11b2-CreERT mice (zG-Kl-KO). Tamoxifen-treated Cyp11b2-CreERT animals (zG-Cre) served as controls. Rosa26-mTmG reporter mice were used for Cre-dependent lineage-marking. Two weeks after tamoxifen induction, the specificity of the zG-Cre line was verified using immunofluorescence analysis to show that GFP expression was restricted to the zG. RNA in situ hybridization revealed a 65% downregulation of Klotho messenger RNA expression in the zG of zG-Kl-KO female mice at age 12 weeks compared to control mice. Despite this significant decrease, zG-Kl-KO mice exhibited no difference in plasma aldosterone levels. However, adrenal CYP11B2 expression and the CYP11B2 promotor regulatory transcription factors, NGFIB and Nurr1, were enhanced. Together with in vitro experiments, these results suggest that zG-derived Klotho modulates Cyp11b2 but does not evoke a systemic phenotype in young adult mice on a normal diet. Further studies are required to investigate the role of adrenal Klotho on aldosterone synthesis in aged animals.
Asunto(s)
Corteza Suprarrenal , Hiperaldosteronismo , Femenino , Ratones , Animales , Zona Glomerular/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Aldosterona/metabolismo , Corteza Suprarrenal/metabolismo , Hiperaldosteronismo/genética , Tamoxifeno/farmacologíaRESUMEN
Background: The pathological examination of lymph node metastasis (LNM) is crucial for treating prostate cancer (PCa). However, the limitations with naked-eye detection and pathologist workload contribute to a high missed-diagnosis rate for nodal micrometastasis. We aimed to develop an artificial intelligence (AI)-based, time-efficient, and high-precision PCa LNM detector (ProCaLNMD) and evaluate its clinical application value. Methods: In this multicentre, retrospective, diagnostic study, consecutive patients with PCa who underwent radical prostatectomy and pelvic lymph node dissection at five centres between Sep 2, 2013 and Apr 28, 2023 were included, and histopathological slides of resected lymph nodes were collected and digitised as whole-slide images for model development and validation. ProCaLNMD was trained at a dataset from a single centre (the Sun Yat-sen Memorial Hospital of Sun Yat-sen University [SYSMH]), and externally validated in the other four centres. A bladder cancer dataset from SYSMH was used to further validate ProCaLNMD, and an additional validation (human-AI comparison and collaboration study) containing consecutive patients with PCa from SYSMH was implemented to evaluate the application value of integrating ProCaLNMD into the clinical workflow. The primary endpoint was the area under the receiver operating characteristic curve (AUROC) of ProCaLNMD. In addition, the performance measures for pathologists with ProCaLNMD assistance was also assessed. Findings: In total, 8225 slides from 1297 patients with PCa were collected and digitised. Overall, 8158 slides (18,761 lymph nodes) from 1297 patients with PCa (median age 68 years [interquartile range 64-73]; 331 [26%] with LNM) were used to train and validate ProCaLNMD. The AUROC of ProCaLNMD ranged from 0.975 (95% confidence interval 0.953-0.998) to 0.992 (0.982-1.000) in the training and validation datasets, with sensitivities > 0.955 and specificities > 0.921. ProCaLNMD also demonstrated an AUROC of 0.979 in the cross-cancer dataset. ProCaLNMD use triggered true reclassification in 43 (4.3%) slides in which micrometastatic tumour regions were initially missed by pathologists, thereby correcting 28 (8.5%) missed-diagnosed cases of previous routine pathological reports. In the human-AI comparison and collaboration study, the sensitivity of ProCaLNMD (0.983 [0.908-1.000]) surpassed that of two junior pathologists (0.862 [0.746-0.939], P = 0.023; 0.879 [0.767-0.950], P = 0.041) by 10-12% and showed no difference to that of two senior pathologists (both 0.983 [0.908-1.000], both P > 0.99). Furthermore, ProCaLNMD significantly boosted the diagnostic sensitivity of two junior pathologists (both P = 0.041) to the level of senior pathologists (both P > 0.99), and substantially reduced the four pathologists' slide reviewing time (-31%, P < 0.0001; -34%, P < 0.0001; -29%, P < 0.0001; and -27%, P = 0.00031). Interpretation: ProCaLNMD demonstrated high diagnostic capabilities for identifying LNM in prostate cancer, reducing the likelihood of missed diagnoses by pathologists and decreasing the slide reviewing time, highlighting its potential for clinical application. Funding: National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, the Guangdong Provincial Clinical Research Centre for Urological Diseases, and the Science and Technology Projects in Guangzhou.
RESUMEN
Stem cell therapy, achieved using mesenchymal stem cells (MSCs), has been highlighted for the treatment of liver fibrosis. Infusion into the circulatory system is a traditional application of MSCs; however, this approach is limited by phenotypic drift, stem cell senescence, and vascular embolism. Maintaining the therapeutic phenotype of MSCs while avoiding adverse infusion-related reactions is the key to developing next-generation stem cell therapy technologies. Here, we propose a bioreactor-based MSCs therapy to avoid cell infusion. In this scheme, 5% liver fibrosis serum was used to induce the therapeutic phenotype of MSCs, and a fluid bioreactor carrying a co-culture system of hepatocytes and MSCs was constructed to produce the therapeutic medium. In a rat model of liver fibrosis, the therapeutic medium derived from the bioreactor significantly alleviated liver fibrosis. Therapeutic mechanisms include immune regulation, inhibition of hepatic stellate cell activation, establishment of hepatocyte homeostasis, and recovery of liver stem cell subsets. Overall, the bioreactor-based stem cell therapy (scheme) described here represents a promising new strategy for the treatment of liver fibrosis and will be beneficial for the development of 'cell-free' stem cell therapy.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas , Animales , Hígado , Cirrosis Hepática/terapia , Cirrosis Hepática/patología , Hepatocitos , FibrosisRESUMEN
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Asunto(s)
Aprendizaje , Lóbulo Temporal , Humanos , Lóbulo Temporal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Niño , Masculino , Femenino , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Sustancia Gris/fisiología , Sustancia Gris/diagnóstico por imagen , Matemática , Memoria/fisiologíaRESUMEN
Introduction: Internal quality control (IQC) is a core pillar of laboratory quality control strategies. Internal quality control commercial materials lack the same characteristics as patient samples and IQC contributes to the costs of laboratory testing. Patient data-based quality control (PDB-QC) may be a valuable supplement to IQC; the smaller the biological variation, the stronger the ability to detect errors. Using the potassium concentration in serum as an example study compared error detection effectiveness between PDB-QC and IQC. Materials and methods: Serum potassium concentrations were measured by using an indirect ion-selective electrode method. For the training database, 23,772 patient-generated data and 366 IQC data from April 2022 to September 2022 were used; 15,351 patient-generated data and 246 IQC data from October 2022 to January 2023 were used as the testing database. For both PDB-QC and IQC, average values and standard deviations were calculated, and z-score charts were plotted for comparison purposes. Results: Five systematic and three random errors were detected using IQC. Nine systematic errors but no random errors were detected in PDB-QC. The PDB-QC showed systematic error warnings earlier than the IQC. Conclusions: The daily average value of patient-generated data was superior to IQC in terms of the efficiency and timeliness of detecting systematic errors but inferior to IQC in detecting random errors.
Asunto(s)
Laboratorios , Humanos , Control de CalidadRESUMEN
BACKGROUND: Blood brain barrier (BBB) breakdown is one of the key mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Astrocytes interact with endothelial and regulate BBB integrity via paracrine signaling factors. More and more studies reveal astrocyte-derived extracellular vesicles (ADEVs) as an important way of intercellular communication. However, the role of ADEV in BBB integrity after ICH remains unclear. METHODS: ADEVs were obtained from astrocytes with or without oxygen and glucose deprivation (OGD) pre-stimulation and the role of ADEVs in ICH was investigated using ICH mice model and ICH cell model. The potential regulatory effect of ADEVs on endothelial barrier integrity was identified by TEER, western blot and immunofluorescence in vitro. In vivo, functional evaluation, Evans-blue leakage and tight junction proteins (TJPs) expression were analyzed. MiRNA sequencing revealed that microRNA-27a-3p (miR-27a-3p) was differentially expressed miRNA in the EVs from OGD-pretreated astrocytes compared with normal control. The regulatory mechanism of miR-27a-3p was assessed using Luciferase assay, RT-PCR, western blot and immunofluorescence. RESULTS: OGD-activated astrocytes reduced hemin-induced endothelial hyper-permeability through secreting EVs. OGD-activated ADEVs alleviated BBB dysfunction after ICH in vivo and in vitro. MicroRNA microarray analysis indicated that miR-27a-3p is a major component that was highly expressed miRNA in OGD pretreated-ADEVs. OGD-ADEVs mitigated BBB injury through transferring miR-27a-3p into bEnd.3 cells and regulating ARHGAP25/Wnt/ß-catenin pathway. CONCLUSION: Taken together, these findings firstly revealed that miR-27a-3p, as one of the main components of OGD-pretreated ADEVs, attenuated BBB destruction and improved neurological deficits following ICH by regulating endothelial ARHGAP25/Wnt/ß-catenin axis. OGD-ADEVs might be a novel strategy for the treatment of ICH. this study implicates that EVs from OGD pre-stimulated astrocytes.
Asunto(s)
Exosomas , MicroARNs , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Astrocitos/metabolismo , beta Catenina/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Oxígeno/metabolismo , Glucosa , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/farmacología , Hemorragia Cerebral/metabolismoRESUMEN
INTRODUCTION: Emerging evidence suggests that uremic toxins, in particular trimethylamine-N-oxide(TMAO), indoxyl-sulfate(IS), and p-cresyl-sulfate(PCS), may associate with increased risk of cardiovascular events(CVe). However, whether uremic toxins increase after partial nephrectomy(PN) and their correlation with risk for CVe remains unknown. METHODS: 100 patients managed with PN were retrospectively reviewed. TMAO/IS/PCS levels were examined by liquid chromatography-mass-spectrometry. Renal-parenchymal-volume-preservation(RPVP) was estimated from CT scans. Predicted risks for CVe were obtained using the Framingham score. Linear regression assessed association between uremic toxins, GFR and risk of CVe. Logistic regression evaluated factors associated with post-PN TMAO. RESULTS: TMAO, IS and PCS increased from 1.7, 3.7 and 3.5 µmol/L before PN to 3.6, 5.4 and 7.4 µmol/L at latest follow-up, respectively, while GFR declined from 102 to 93 ml/min/1.73 m2 (all p<0.001). TMAO, IS and PCS levels all negatively correlated with GFR(all p<0.001). Predicted 10-year risk of CVe increased from 1.1% pre-PN to 1.7% post-PN(p<0.001), primarily due to increased age(p<0.001), blood pressure(p = 0.002) and total cholesterol(p = 0.003). TMAO(ß = 0.038) and GFR (ß = -0.02) were independent predictors for predicted 10-year CVe risk on multivariable-analysis. Increased TMAO was an early and sustained finding maintained through 5 years, unlike IS, PCS and eGFR. On multivariable analysis, increased pre-PN TMAO(OR = 2.79) and decreased RPVP(OR = 3.23) were identified as independent risk factors for higher post-PN TMAO, while ischemia type/duration failed to correlate. CONCLUSION: Uremic toxin levels increased after PN correlating with reduced GFR. Higher TMAO independently associated with greater predicted 10-year CVe risk. Parenchymal mass preserved rather than ischemia time or type associated with increased TMAO.
Asunto(s)
Enfermedades Cardiovasculares , Tóxinas Urémicas , Humanos , Estudios Retrospectivos , Nefrectomía/efectos adversos , Nefrectomía/métodos , Isquemia/etiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Sulfatos , ÓxidosRESUMEN
Background: Since the application of Immune checkpoint inhibitors (ICI), the clinical outcome for metastatic cancer has been greatly improved. Nevertheless, treatment response varies in patients, making it urgent to identify patients who will receive clinical benefits after ICI therapy. Adipose body composition has proved to be associated with tumor response. In this systematic review, we aimed to summarize the current evidence on imaging adipose biomarkers that predict clinical outcomes in patients treated with ICI in various cancer types. Methods: Embase and PubMed were searched from database inception to 1st February 2023. Articles included investigated the association between imaging-based adipose biomarkers and the clinical outcomes of patients treated with ICI. The methodological quality of included studies was evaluated through Newcastle- Ottawa Quality Assessment Scale and Radiomics Quality Score tools. Results: Totally, 22 studies including 2256 patients were selected. Non-small cell lung cancer (NSCLC) had the most articles (6 studies), followed by melanoma (5 studies), renal cell carcinoma (RCC) (3 studies), urothelial carcinoma (UC) (2 studies), head and neck squamous cell carcinoma (HNSCC) (1 study), gastric cancer (1 study) and liver cancer (1 study). The remaining 3 studies investigated metastatic solid tumors including various types of cancers. Adipose biomarkers can be summarized into 5 categories, including total fat, visceral fat, subcutaneous fat, intramuscular fat and others, which exerted diverse correlations with patients' prognosis after being treated with ICI in different cancers. Most biomarkers of body fat were positively associated with survival benefits. Nevertheless, more total fat was predictable of worse outcomes in NSCLC, while inter-muscular fat was associated with poor clinical benefits in UC. Conclusion: There is relatively well-supported evidence for imaging-based adipose biomarkers to predict the clinical outcome of ICI. In general, most of the studies show that adipose tissue is positively correlated with clinical outcomes. This review summarizes the significant biomarkers proven by researches for each cancer type. Further validation and large independent prospective cohorts are needed in the future. The protocol of this systematic review has been registered at the International Prospective Register of Systematic Reviews (http://www.crd.york.ac.uk/PROSPERO, registration no: CRD42023401986).
RESUMEN
BACKGROUND: The use of umbilical cord mesenchymal stem cells (UC-MSCs) is a burgeoning method for the treatment of liver cirrhosis. However, the secretory phenotype and regulatory ability of UC-MSCs are easily affected by their microenvironment. Ensuring a specific microenvironment to enhance the UC-MSCs phenotype is a potential strategy for improving their therapeutic efficacy. The aim of this study was to explore therapeutic UC-MSCs phenotypes for improving liver fibrosis. METHODS: RNA-sequencing was used to analyze the response pattern of UC-MSCs after exposure to the serum of cirrhotic patients with HBV. Using immunohistochemistry, quantitative polymerase chain reaction, and immunofluorescence techniques, we evaluated the therapeutic effect of UC-MSCs pretreated with interferon alpha 2 (IFN-α2) (pre-MSCs) in an animal model of cirrhosis. Immunoblotting, ELISA, and other techniques were used to analyze the signaling pathways underlying the IFN-induced changes in UC-MSCs. RESULTS: UC-MSCs exposed to the serum of patients with hepatitis B-induced cirrhosis showed an enhanced response to type I IFN. The activated type I IFN signal induced the highest secretion of colony-stimulating factor 3 (CSF-3), interleukin (IL)-8, and chemokine (C-C motif) ligand 20 (CCL20) by the UC-MSCs. Pre-MSCs showed a higher therapeutic efficacy than untreated UC-MSCs in an animal model of liver fibrosis. Immunohistochemical analysis revealed that pre-MSCs could recruit neutrophils resulting in an increase in the secretion of matrix metalloprotease 8 that alleviated fibrosis. When neutrophils in animals were depleted, the therapeutic effect of pre-MSCs on fibrosis was inhibited. IFN-α2 altered the secretory phenotype of UC-MSCs by activating phosphorylated signal transducer and activator of transcription 1 and 2 (p-STAT1 and p-STAT2). CONCLUSIONS: Pre-MSCs exhibited enhanced secretion of CSF-3, IL-8, and CCL20 and recruited neutrophils to alleviate fibrosis. This new strategy can improve cell therapy for liver cirrhosis.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Animales , Interferón alfa-2/farmacología , Neutrófilos , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Fibrosis , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Trasplante de Células Madre Mesenquimatosas/métodosRESUMEN
Umbilical cord mesenchymal stem cell (UC-MSC) therapy improves liver function in liver cirrhosis patients. This study aimed to elucidate the therapeutic mechanism underlying cell therapy by analyzing changes in the modification and expression of proteins 1 month post-treatment with UC-MSCs. This prospective study included 11 cirrhosis patients who received MSC injection. The laboratory indexes before and after treatment were collected to evaluate the clinical treatment effect of UC-MSCs, and the protein expression and lactylation modification in the liver were comprehensively revealed. Meanwhile, weighted gene co-expression network analysis was used to analyze the co-expression protein modules and their relationship with clinical features. The patients with liver cirrhosis showed an improvement trend after receiving UC-MSC treatment; specifically, the liver protein synthesis function was significantly improved and the coagulation function was also significantly improved. Proteomics combined with lactic acid proteomics revealed 160 lysine lactylation (Kla) sites of 119 proteins. Functional analysis showed that the lactylation-modified proteins were enriched in the pathway of glucose and other substances' metabolism, and many key enzymes of glycolysis and gluconeogenesis were lactated. UC-MSC therapy has a certain clinical effect in the treatment of liver cirrhosis and may act by regulating material metabolism, because the lactylation protein points to energy metabolism.
RESUMEN
Hepatic stellate cells (HSCs) are the key promoters of liver fibrosis. In response to liver-fibrosis-inducing factors, HSCs express alpha smooth muscle actin (α-SMA) and obtain myofibroblast phenotype. Collagen secretion and high expression of α-SMA with related high cell tension and migration limitation are the main characteristics of myofibroblasts. How these two characteristics define the role of myofibroblasts in the initiation and progression of liver fibrosis is worth exploring. From this perspective, we explored the correlation between α-SMA expression and collagen secretion in myofibroblasts and the characteristics of collagen deposition in liver fibrosis. Based on a reasonable hypothesis and experimental verification, we believe that the myofibroblast with the α-SMAhighcollagenhigh model do not effectively explain the initial stage and progression characteristics of liver fibrosis. Therefore, we propose a myofibroblast dual-mode transition model in fibrotic liver (DMTM model). In the DMTM model, myofibroblasts have dual modes. Myofibroblasts obtain enhanced α-SMA expression, accompanied by collagen expression inhibition in the high-concentration region of TGF-ß. At the edge of the TGF-ß positive region, myofibroblasts convert to a high-migration and high-collagen secretion phenotype. This model reasonably explains collagen deposition and expansion in the initial stage of liver fibrosis.
Asunto(s)
Células Estrelladas Hepáticas , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Colágeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Actinas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Hígado/metabolismoRESUMEN
BACKGROUND: Although sex bias has been reported in the development and progression of renal cell carcinoma (RCC), the underlying mechanisms remain enigmatic. Here, we investigated the sex differences in the tumor microenvironment (TME) of RCC and explored a promising combination drug regimen to enhance the efficacy of immunotherapy. METHODS: Single-cell RNA sequencing (scRNA-seq) data from four published datasets were analyzed to investigate the sex differences in RCC patients, and tumor tissues were collected to validate the sex differences using multiplex immunofluorescence (MxIF) and flow cytometry (FCM). The function of the androgen-androgen receptor axis in sex differences was explored in vivo and in vitro experiments. RESULTS: Our analysis of scRNA-seq data from 220,156 cells, as well as MxIF and FCM assays, revealed that CD8+ T-cells infiltrated highly in the TME of male RCC, but were mostly in an exhausted and dysfunctional state. In vitro and in vivo experiments indicated that the dysfunction and exhaustion of CD8+ T-cells in male TME were induced by androgen. Clinically, higher serum androgen was significantly associated with a worse prognosis in male RCC patients receiving immunotherapy. Androgen receptor inhibitors could activate tumor-infiltrating CD8+ T-cells and enhance the efficacy of immunotherapy of RCC in vivo. CONCLUSIONS: Our study delineated the difference in TME between male and female patients with RCC, and demonstrated that the androgen-androgen receptor axis plays an important role in immunosuppression in male RCC. Our findings suggest that androgen receptor inhibitors in combination with immunotherapy may be a promising treatment option for male RCC patients.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Femenino , Humanos , Masculino , Linfocitos T CD8-positivos , Receptores Androgénicos , Caracteres Sexuales , Andrógenos , Análisis de la Célula Individual , Microambiente TumoralRESUMEN
OBJECTIVE: This study aims to demonstrate the cellular composition and underlying mechanisms in subchondral bone marrow lesions (BMLs) of knee osteoarthritis (OA). METHODS: BMLs were assessed by MRI Osteoarthritis Knee Score (MOAKS)≥2. Bulk RNA-sequencing (bulk-seq) and BML-specific differentially expressed genes (DEGs) analysis were performed among subchondral bone samples (including OA-BML=3, paired OA-NBML=3; non-OA=3). The hub genes of BMLs were identified by verifying in independent datasets and multiple bioinformatic analyses. To further estimate cell-type composition of subchondral bone, we utilized two newly developed deconvolution algorithms (MuSiC, MCP-counter) in transcriptomic datasets, based on signatures from open-accessed single-cell RNA sequencing (scRNA-seq). Finally, competing endogenous RNA (ceRNA) and transcription factor (TF) networks were constructed through multiple predictive databases, and validated by public non-coding RNA profiles. RESULTS: A total of 86 BML-specific DEGs (up 79, down 7) were identified. IL11 and VCAN were identified as core hub genes. The "has-miR-424-5p/lncRNA PVT1" was determined as crucial network, targeting IL11 and VCAN, respectively. More importantly, two deconvolution algorithms produced approximate estimations of cell-type composition, and the cluster of heterotopic-chondrocyte was discovered abundant in BMLs, and positively correlated with the expression of hub genes. CONCLUSION: IL11 and VCAN were identified as the core hub genes of BMLs, and their molecular networks were determined as well. We profiled the characteristics of subchondral bone at single-cell level and determined that the heterotopic-chondrocyte was abundant in BMLs and was closely linked to IL11 and VCAN. Our study may provide new insights into the microenvironment and pathological molecular mechanism of BMLs, and could lead to novel therapeutic strategies.
Asunto(s)
Enfermedades Óseas , Enfermedades de los Cartílagos , Osteoartritis de la Rodilla , Humanos , Médula Ósea , Transcriptoma , Interleucina-11 , Osteoartritis de la Rodilla/genéticaRESUMEN
The Mediterranean diet (MD) is a healthy diet pattern that can prevent chronic age-related diseases, especially age-related eye diseases (AREDs) including cataract, glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR) and dry eye syndrome (DES). In this study, we systematically reviewed studies in the literature that had reported associations between adherence to the MD and the five above-mentioned AREDs. Randomized controlled trials as well as prospective and retrospective observational studies were included; 1164 studies were identified, of which 1, 2, 9, 2 and 4 studies met our eligibility criteria for cataract, glaucoma, AMD, DR, and DES, respectively. According to these studies, higher MD adherence was associated with reduced risks of incident DR, incident AMD and progression to late AMD, but whether early and neovascular AMD could be alleviated remained to be debated. The results regarding the effects of the MD on DES were mixed, with three studies reporting an associations between MD and decreased severity or incidence of DES, whereas one study reported the opposite. No significant associations were observed between the MD and cataract or glaucoma. Generally, convincing evidence suggested a protective effect of the MD against AMD and DR. However, the evidence for cataract, glaucoma, and DES was less conclusive, and high-quality studies are needed for comprehensive evaluations of the potential benefits of MD on these eye diseases.
Asunto(s)
Catarata , Retinopatía Diabética , Dieta Mediterránea , Glaucoma , Degeneración Macular Húmeda , Humanos , Inhibidores de la Angiogénesis , Estudios Prospectivos , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Glaucoma/epidemiología , Glaucoma/prevención & control , Catarata/epidemiología , Catarata/prevención & control , Retinopatía Diabética/epidemiología , Retinopatía Diabética/prevención & controlRESUMEN
Androgenetic alopecia is the most common cause of hair loss aggravated by increased life pressure, tension, and anxiety. Although androgenetic alopecia (AGA) does not significantly effect physical health, it can have serious negative impact on the mental health and quality of life of the patient. Currently, the effect of medical treatment for AGA is not idealistic, stem cell-based regenerative medicine has shown potential for hair regrowth and follicle repair, but the long-term effect and mechanism of stem cell therapy is not quite explicit. In this review, we summarize the methods, efficacy, mechanism, and clinical progress of stem cell therapies for AGA by now, hope it will present a more comprehensive view in this topic.