Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Alzheimers Dement ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129223

RESUMEN

INTRODUCTION: The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS: Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS: Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION: Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS: Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.

2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3912-3923, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099365

RESUMEN

In this study, we delved into the prototypical components and metabolites of Platycodonis Radix extracts(PRE) from Tongcheng city in plasma, urine and feces of rats, and revealed its metabolic pathways and metabolic rules in vivo. The prototypical components and metabolites of PRE in rats were characterized and identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and mass defect filter(MDF). The biological samples were analyzed by ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm), with 0.1% formic acid water(A)-0.1% formic acid acetonitrile(B) as mobile phase, and the biological samples were analyzed in negative ion mode by electrospray ionization mass spectrometry(ESI-MS). Twelve prototypical saponins and twenty-seven metabolites were detected in plasma, urine and feces of rats treated with PRE by oral administration. Eleven prototypical components and nine metabolites were detected in plasma, eleven prototypical components and eight metabo-lites were detected in urine, and ten prototypical components and twenty metabolites were detected in feces. Further studies showed that the metabolic pathways of PRE in rats mainly include oxidation, reduction, acetylation, stepwise hydrolytic deglycosylation, glucuronidation and so on. This study provides a scientific basis for clarifying the pharmacological basis and mechanism of PRE from Tongcheng city.


Asunto(s)
Medicamentos Herbarios Chinos , Redes y Vías Metabólicas , Platycodon , Ratas Sprague-Dawley , Animales , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Masculino , Cromatografía Líquida de Alta Presión , Platycodon/química , Heces/química , Espectrometría de Masa por Ionización de Electrospray , Saponinas/metabolismo , China
3.
Cardiovasc Diabetol ; 23(1): 283, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097703

RESUMEN

BACKGROUND: Heart failure (HF) with improved ejection fraction (EF, HFimpEF) is a distinct HF subtype, characterized by left ventricular (LV) reverse remodeling and myocardial functional recovery. Multiple cardiometabolic factors are implicated in this process. Epicardial adipose tissue (EAT), emerging as an endocrine and paracrine organ, contributes to the onset and progression of HF. However, the relation between EAT and the incidence of HFimpEF is still unclear. METHODS: A total of 203 hospitalized HF patients with reduced EF (HFrEF, LVEF ≤ 40%) who underwent coronary CT angiography (CCTA) during index hospitalization were consecutively enrolled between November 2011 and December 2022. Routine follow-up and repeat echocardiograms were performed. The incidence of HFimpEF was defined as (1) an absolute LVEF improvement ≥ 10% and (2) a second LVEF > 40% (at least 3 months apart). EAT volume and density were semiautomatically quantified on non-enhanced series of CCTA scans. RESULTS: During a median follow-up of 8.6 (4.9 ~ 13.3) months, 104 (51.2%) patients developed HFimpEF. Compared with HFrEF patients, HFimpEF patients had lower EAT volume (115.36 [IQR 87.08 ~ 154.78] mL vs. 169.67 [IQR 137.22 ~ 218.89] mL, P < 0.001) and higher EAT density (-74.92 ± 6.84 HU vs. -78.76 ± 6.28 HU, P < 0.001). Multivariate analysis showed lower EAT volume (OR: 0.885 [95%CI 0.822 ~ 0.947]) and higher density (OR: 1.845 [95%CI 1.023 ~ 3.437]) were both independently associated with the incidence of HFimpEF. Subgroup analysis revealed that the association between EAT properties and HFimpEF was not modified by HF etiology. CONCLUSIONS: This study reveals that lower EAT volume and higher EAT density are associated with development of HFimpEF. Therapies targeted at reducing EAT quantity and improving its quality might provide favorable effects on myocardial recovery in HF patients.


Asunto(s)
Adiposidad , Angiografía por Tomografía Computarizada , Tejido Adiposo Epicárdico , Insuficiencia Cardíaca , Pericardio , Recuperación de la Función , Volumen Sistólico , Función Ventricular Izquierda , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Angiografía Coronaria , Tejido Adiposo Epicárdico/diagnóstico por imagen , Tejido Adiposo Epicárdico/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Pericardio/diagnóstico por imagen , Pericardio/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo , Remodelación Ventricular
4.
World J Gastroenterol ; 30(26): 3206-3209, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39086639

RESUMEN

In this editorial, we review the work of Razali et al published in World J Gastroenterology, with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase (PI3K) pathway and buparlisib on colitis-associated cancer. The role of PI3K in promoting cancer progression has been widely recognized, as it is involved in regulating the survival, differentiation, and proliferation of cancer cells. The complement Clq/TNF-related protein 6 (CTRP6) is a newer tumor-associated factor. Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer, hepatocellular carcinoma, colorectal cancer, and other gastrointestinal tumors through the PI3K pathway. This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Transducción de Señal , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Neoplasias del Sistema Digestivo/patología , Neoplasias del Sistema Digestivo/metabolismo
5.
Biosens Bioelectron ; 263: 116630, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102773

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Técnicas Biosensibles , COVID-19 , Flavanonas , Flavonoides , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Animales , Técnicas Biosensibles/métodos , Humanos , SARS-CoV-2/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Flavanonas/farmacología , Flavanonas/química , Ratones , COVID-19/virología , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Células HEK293
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125685

RESUMEN

Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hierro , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hierro/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Simulación del Acoplamiento Molecular , Poaceae/genética , Poaceae/metabolismo
7.
Kaohsiung J Med Sci ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162596

RESUMEN

Recurrent spontaneous abortion (RSA) has a complex pathogenesis with an increasing prevalence and is one of the most intractable clinical challenges in the field of reproductive medicine. Quercetin (QCT) is an effective active ingredient extracted from Semen Cuscutae and Herba Taxilli used in traditional Chinese medicine for tonifyng the kidneys and promoting fetal restoration. Although QCT helps improve adverse pregnancy outcomes, the specific mechanism remains unclear. The trophoblast cell line HTR-8/SVneo cultured in vitro was treated with different concentrations of QCT, and the cell counting kit-8 assay, wound healing assay, transwell assay, and western blotting were used to evaluate the effects and mechanisms of QCT on the proliferation, migration, and invasion of HTR-8/SVneo cells, respectively. To assess the expression levels of miR-149-3p and AKT serine/threonine kinase 1 (AKT1), quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were performed. A dual-luciferase reporter assay was used to investigate the potential regulatory relationship between miR-149-3p and AKT1. Our results showed that QCT promoted the proliferation, migration, and invasion of trophoblast cells, promoted the expression of MMP2, MMP9, and vimentin, and downregulated the expression of E-cadherin. Mechanistically, QCT downregulated the expression of miR-149-3p and upregulated the expression of AKT1, and miR-149-3p directly targets AKT1, negatively regulating its expression. Overexpression of miR-149-3p and silencing of AKT1 counteracted the promotional effects of QCT on trophoblast proliferation, migration, and invasion. Taken together, QCT regulates the migration and invasion abilities of HTR-8/SVneo cells through the miR-149-3p/AKT1 axis, which may provide a promising therapeutic approach for RSA.

8.
Heliyon ; 10(15): e35266, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39161807

RESUMEN

Electrosurgical electrodes are the main dissecting devices widely used for surgeries throughout the world. The present study aimed to evaluate the thermal injury and safety within animals' organs following a minimally invasive electrosurgery technique with electrosurgical electrode AE40-300 (LIPO) and AE20-80 (LIFT). To ensure the effective application of electrosurgery in a clinical environment, it is crucial to minimize heat-induced injury to nearby tissues. In this study, the skin, liver, kidney, and femoral muscle dissected from 9 minipigs were used in tissue thermal spread experiments. Thermal imaging area analysis, maximum temperature, and time to reach basal temperature were evaluated. Thermography results revealed that the surgical temperature was significantly lower in the minimally invasive electrosurgery with AE40-300 (LIPO) and AE20-80 (LIFT) compared to the predicate device. In addition, AE40-300 (LIPO) and AE20-80 (LIFT) created a relatively small thermal injury area and thermal diffusion. Our results indicated that the tested devices named AE40-300 (LIPO) and AE20-80 (LIFT) reduced excessive thermal injury and could be applied to clinical use safely.

9.
Plant Physiol Biochem ; 215: 109011, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128403

RESUMEN

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.

10.
ACS Appl Mater Interfaces ; 16(31): 40753-40766, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046129

RESUMEN

Platinum(II) drugs as a first-line anticancer reagent are limited by side effects and drug resistance. Stimuli-responsive nanosystems hold promise for precise spatiotemporal manipulation of drug delivery, with the aim to promote bioavailability and minimize side effects. Herein, a multitargeting octahedral platinum(IV) prodrug with octadecyl aliphatic chain and histone deacetylase inhibitor (phenylbutyric acid, PHB) at axial positions to improve the therapeutic effect of cisplatin was loaded on the upconversion nanoparticles (UCNPs) through hydrophobic interaction. Followed attachment of DSPE-PEG2000 and arginine-glycine-aspartic (RGD) peptide endowed the nanovehicles with high biocompatibility and tumor specificity. The fabricated nanoparticles (UCNP/Pt(IV)-RGD) can be triggered by upconversion luminescence (UCL) irradiation and glutathione (GSH) reduction to controllably release Pt(II) species and PHB, inducing profound cytotoxicity. Both in vitro and in vivo experiments demonstrated that UCNP/Pt(IV)-RGD exhibited remarkable antitumor efficiency, high tumor-targeting specificity, and real-time UCL imaging capacity, presenting an intelligent platinum(IV) prodrug-loaded nanovehicle for UCL-guided dual-stimuli-responsive combination therapy.


Asunto(s)
Antineoplásicos , Glutatión , Nanopartículas , Oligopéptidos , Profármacos , Animales , Humanos , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/química , Cisplatino/farmacología , Cisplatino/uso terapéutico , Glutatión/química , Glutatión/metabolismo , Rayos Infrarrojos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/diagnóstico por imagen , Oligopéptidos/química , Platino (Metal)/química , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Prohibitinas
11.
J Mol Med (Berl) ; 102(9): 1101-1115, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38953935

RESUMEN

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.


Asunto(s)
Disfunción Cognitiva , Metformina , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Sirtuina 1 , Animales , Metformina/farmacología , Metformina/uso terapéutico , Sirtuina 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratones , Masculino , Transducción de Señal/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
Artículo en Inglés | MEDLINE | ID: mdl-39021186

RESUMEN

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

13.
Skin Res Technol ; 30(7): e13780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031929

RESUMEN

In this study, scalp tissues from Korean adults between 20 and 80 without skin disease were used. Scalp tissues were processed, and hair follicles were isolated and cultured with different treatments (including Bioscalp, Ultra Exo Booster, and Ultra S Line Plus) from Ultra V company. Over 12 days, observations and measurements of hair follicle characteristics were recorded at intervals (Days 0, 3, 6, 9, and 12). The study assessed the impact of these substances on hair follicle growth and morphology. Bioscalp, combined with Ultra Exo Booster and Ultra S Line Plus, showed significant hair elongation in ex vivo. Preservation of hair bulb diameter was observed, indicating potential for sustained hair growth by exosome-based products. The hair growth cycle analysis suggested a lower transition to the catagen stage in test products from Ultra V compared to non-treated groups. The research findings indicated that the tested formulations, especially the combination of Bioscalp, Ultra Exo Booster, and Ultra S Line Plus, demonstrated significant effectiveness in promoting hair growth, maintaining the integrity of the hair bulb, and reducing the transition to the catagen stage. The study suggests promising alternative treatments for hair loss, illustrating results that were as good as those of the conventional testing product groups.


Asunto(s)
Folículo Piloso , Cabello , Mesoterapia , Cuero Cabelludo , Humanos , Adulto , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Persona de Mediana Edad , Cuero Cabelludo/efectos de los fármacos , Cabello/crecimiento & desarrollo , Cabello/efectos de los fármacos , Anciano , Mesoterapia/métodos , Femenino , Adulto Joven , Masculino , Anciano de 80 o más Años
14.
Skin Res Technol ; 30(7): eSRT13784, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031931

RESUMEN

BACKGROUND: Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS: Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS: The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1ß) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION: "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.


Asunto(s)
Ácido Hialurónico , Iontoforesis , Agujas , Piel , Humanos , Ácido Hialurónico/administración & dosificación , Iontoforesis/métodos , Iontoforesis/instrumentación , Piel/efectos de la radiación , Colágeno , Elasticidad , Metaloproteinasa 1 de la Matriz/metabolismo , Interleucina-1beta/metabolismo , Rayos Ultravioleta , Envejecimiento de la Piel/efectos de la radiación , Pérdida Insensible de Agua/efectos de la radiación , Parche Transdérmico , Colágeno Tipo I/metabolismo
15.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000713

RESUMEN

Chitosan samples were prepared from the shells of marine animals (crab and shrimp) and the cell walls of fungi (agaricus bisporus and aspergillus niger). Fourier-transform infrared spectroscopy (FT-IR) was used to detect their molecular structures, while headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was employed to analyze their odor composition. A total of 220 volatile organic compounds (VOCs), including esters, ketones, aldehydes, etc., were identified as the odor fingerprinting components of chitosan for the first time. A principal component analysis (PCA) revealed that chitosan could be effectively identified and classified based on its characteristic VOCs. The sum of the first three principal components explained 87% of the total variance in original information. An orthogonal partial least squares discrimination analysis (OPLS-DA) model was established for tracing and source identification purposes, demonstrating excellent performance with fitting indices R2X = 0.866, R2Y = 0.996, Q2 = 0.989 for independent variable fitting and model prediction accuracy, respectively. By utilizing OPLS-DA modeling along with a heatmap-based tracing path study, it was found that 29 VOCs significantly contributed to marine chitosan at a significance level of VIP > 1.00 (p < 0.05), whereas another set of 20 VOCs specifically associated with fungi chitosan exhibited notable contributions to its odor profile. These findings present a novel method for identifying commercial chitosan sources, which can be applied to ensure biological safety in practical applications.

16.
Front Bioeng Biotechnol ; 12: 1407797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978716

RESUMEN

Human skin-derived ECM aids cell functions but can trigger immune reactions; therefore it is addressed through decellularization. Acellular dermal matrices (ADMs), known for their regenerative properties, are used in tissue and organ regeneration. ADMs now play a key role in plastic and reconstructive surgery, enhancing aesthetics and reducing capsular contracture risk. Innovative decellularization with supercritical carbon dioxide preserves ECM quality for clinical use. The study investigated the cytotoxicity, biocompatibility, and anti-inflammatory properties of supercritical CO2 acellular dermal matrix (scADM) in vivo based on Sprague Dawley rat models. Initial experiments in vitro with fibroblast cells confirmed the non-toxic nature of scADM and demonstrated cell infiltration into scADMs after incubation. Subsequent tests in vitro revealed the ability of scADM to suppress inflammation induced by lipopolysaccharides (LPS) presenting by the reduction of pro-inflammatory cytokines TNF-α, IL-6, IL-1ß, and MCP-1. In the in vivo model, histological assessment of implanted scADMs in 6 months revealed a decrease in inflammatory cells, confirmed further by the biomarkers of inflammation in immunofluorescence staining. Besides, an increase in fibroblast infiltration and collagen formation was observed in histological staining, which was supported by various biomarkers of fibroblasts. Moreover, the study demonstrated vascularization and macrophage polarization, depicting increased endothelial cell formation. Alteration of matrix metalloproteinases (MMPs) was analyzed by RT-PCR, indicating the reduction of MMP2, MMP3, and MMP9 levels over time. Simultaneously, an increase in collagen deposition of collagen I and collagen III was observed, verified in immunofluorescent staining, RT-PCR, and western blotting. Overall, the findings suggested that scADMs offer significant benefits in improving outcomes in implant-based procedures as well as soft tissue substitution.

17.
Geroscience ; 46(5): 5365-5385, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837026

RESUMEN

Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.


Asunto(s)
Secuenciación del Exoma , Proteínas Represoras , Humanos , Masculino , Proteínas Represoras/genética , Femenino , Dioxigenasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/genética , Envejecimiento/genética , Persona de Mediana Edad , Anciano , Estudio de Asociación del Genoma Completo , Homeostasis del Telómero/genética , Leucocitos/metabolismo , Telómero/genética , Neoplasias/genética , Exoma/genética
18.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862926

RESUMEN

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Asunto(s)
Áfidos , Metaboloma , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/parasitología , Sorghum/metabolismo , Áfidos/fisiología , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
19.
Front Endocrinol (Lausanne) ; 15: 1327903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846495

RESUMEN

Objectives: To research the connection between the indexes of the indexes of triglyceride-glucose (TyG) combined with obesity indices and the initial neurological severity and short-term outcome of new-onset acute ischemic stroke. Methods: Data of patients with acute ischemic stroke admitted to the Stroke Ward of the Affiliated Hospital of Beihua University from November 2021 to October 2023, were collected. The two indexes were calculated by combining TyG and obesity indices: TyG-body mass index (TyG-BMI) and TyG-waist circumference (TyG-WC). The National Institute of Health Stroke Scale (NIHSS) was used to assess and group patients with neurological deficits within 24 hours of admission: mild stroke (NIHSS ≤5) and moderate-severe stroke (NIHSS >5). Short-term prognosis was evaluated using the modified Rankin Scale (mRS) at discharge or 14 days after onset of the disease and grouped: good outcome (mRS ≤2) and poor outcome (mRS >2). According to the quartiles of TyG-BMI and TyG-WC, the patients were placed into four groups: Q1, Q2, Q3 and Q4. Multi-factor logistic regression analysis was utilized to evaluate the correlation of TyG-BMI and TyG-WC with the severity and short-term outcome. Results: The study included 456 patients. After adjusting for multiple variables, the results showed that compared with the quartile 1, patients in quartile 4 of TyG-BMI had a reduced risk of moderate-severe stroke [Q4: OR: 0.407, 95%CI (0.185-0.894), P = 0.025]; Patients in quartiles 2, 3 and 4 of TyG-BMI had sequentially lower risk of short-term adverse outcomes [Q2: OR: 0.394, 95%CI (0.215-0.722), P = 0.003; Q3: OR: 0.324, 95%CI (0.163-0.642), P = 0.001; Q4: OR: 0.158, 95%CI (0.027-0.349), P <0.001]; Patients in quartiles 3 and 4 of TyG-WC had sequentially lower risk of moderate-severe stroke [Q3: OR: 0.355, 95%CI (0.173-0.728), P = 0.005; Q4: OR: 0.140, 95%CI (0.056-0.351), P <0.001]; Patients in quartiles 3 and 4 of TyG-WC had sequentially lower risk of short-term adverse outcomes [Q3: OR: 0.350, 95%CI (0.175-0.700), P = 0.003; Q4: OR: 0.178, 95%CI (0.071-0.451), P <0.001]. Conclusions: TyG-WC and TyG-BMI were correlated with the severity and short-term outcome of new-onset acute ischemic stroke. As TyG-WC and TyG-BMI increased, stroke severity decreased and short-term outcome was better.


Asunto(s)
Glucemia , Índice de Masa Corporal , Accidente Cerebrovascular Isquémico , Índice de Severidad de la Enfermedad , Triglicéridos , Humanos , Masculino , Femenino , Accidente Cerebrovascular Isquémico/sangre , Persona de Mediana Edad , Anciano , Triglicéridos/sangre , Pronóstico , Glucemia/análisis , Glucemia/metabolismo , Circunferencia de la Cintura , Obesidad/sangre , Obesidad/complicaciones
20.
Environ Res ; 258: 119456, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906445

RESUMEN

Anaerobic biological treatment technology, especially denitrification and anaerobic ammonia oxidation (anammox) technology as mainstream process, played dominant role in the field of biological wastewater treatment. However, the above process was prone to sludge floating during high load operation and thereby affecting the efficient and stable operation of the system. Excessive production of extracellular polymeric substance (EPS) was considered to be the main reason for anaerobic granular sludge flotation, but the summaries in this area were not comprehensive enough. In this review, the potential mechanisms of denitrification and anammox sludge floatation were discussed from the perspective of granular sludge structural characteristics, nutrient transfer, and microbial flora change respectively, and the corresponding control strategies were also summarized. Finally, this paper indicated that future research on sludge flotation should focus on reducing the negative effects of EPS in sludge particles.


Asunto(s)
Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Nitrógeno/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA