Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Total Environ ; 944: 173652, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38825209

RESUMEN

Straw incorporation with nitrogen (N) fertilization is crucial for enhancing soil fertility and minimizing negative environmental impacts by altering the magnitude and direction of soil N transformation processes. However, the response of soil N transformations to long-term carbon (C) and N inputs, and their primary driving factors, remain poorly understood. Thus, a 15N tracing study was conducted to investigate the effects of straw incorporation (AS) and straw removal (NS) with N levels of 0, 150 and 250 kg N ha-1 per season (N0, N150 and N250) on gross N transformation rates in the North China Plain after 6-year trial. Results indicated that at N0, AS significantly increased soil microbial immobilization of nitrate (NO3--N, INO3) and autotrophic nitrification rates (ONH4) compared to NS. With N fertilization, AS increased gross N immobilization (Itotal), ammonium-N immobilization (NH4+-N, INH4), net NH4+-N immobilization (InetNH4) and net NH4+-N absorption rates (AnetNH4). Specifically, at N150, AS significantly increased recalcitrant organic N mineralization rate (MNrec), while significantly reducing ONH4, labile organic N mineralization (MNlab), and gross N mineralization rates (Mtotal). At N250, AnetNH4, MNlab, MNrec and ONH4 under AS were significantly higher than under NS. Nitrogen application significantly increased ONH4, Itotal and INO3 under two straw management practices, and enhanced INH4 and InetNH4 under AS. Compared to N250, N150 significantly increased INH4 and InetNH4 under AS, while decreasing Mtotal. Opposite results were observed under NS. Meanwhile, NO3--N and dissolved organic carbon (DOC) were master factors controlling immobilization, total nitrogen (TN), hydrolysable NH4+-N (HNN) and stable organic N significantly affected AnetNH4, while labile organic N were the key environmental factors affecting MNrec, all of which positively influenced the rates of assimilation, mineralization and clay mineral adsorption. Overall, this study provides new insights into reducing N fertilization under straw incorporation by quantifying soil N transformation processes.


Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , China , Nitrógeno/análisis , Suelo/química , Agricultura/métodos , Nitrificación , Microbiología del Suelo , Monitoreo del Ambiente , Agua Subterránea/química
2.
Microb Ecol ; 86(4): 2541-2551, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37401933

RESUMEN

Long-term fertilization affects soil organic C accumulation. A growing body of research has revealed critical roles of bacteria in soil organic C accumulation, particularly through mineral-associated organic C (MAOC) formation. Protists are essential components of soil microbiome, but the relationships between MAOC formation and protists under long-term fertilization remain unclear. Here, we used cropland soil from a long-term fertilization field trial and conducted two microcosm experiments with 13C-glucose addition to investigate the effects of N and P fertilizations on MAOC formation and the relationships with protists. The results showed that long-term fertilization (especially P fertilization) significantly (P < 0.05) increased 13C-MAOC content. Compared with P-deficient treatment, P replenishment enriched the number of protists (mainly Amoebozoa and Cercozoa) and bacteria (mainly Acidobacteriota, Bacteroidota, and Gammaproteobacteria), and significantly (P < 0.001) promoted the abundances of bacterial functional genes controlling C, N, P, and S metabolisms. The community composition of phagotrophic protists prominently (P < 0.001) correlated with the bacterial community composition, bacterial functional gene abundance, and 13C-MAOC content. Co-occurrence networks of phagotrophic protists and bacteria were more connected in soil with the N inoculum added than in soil with the NP inoculum added. P replenishment strengthened bacterial 13C assimilation (i.e., 13C-phospholipid fatty acid content), which negatively (P < 0.05) correlated with the number and relative abundance of phagotrophic Cercozoa. Together, these results suggested that P fertilization boosts MAOC formation associated with phagotrophic protists. Our study paves the way for future research to harness the potential of protists to promote belowground C accrual in agroecosystems.


Asunto(s)
Fósforo , Suelo , Fósforo/metabolismo , Carbono/metabolismo , Microbiología del Suelo , Minerales/metabolismo , Bacterias/genética , Bacterias/metabolismo , Fertilizantes/análisis , Fertilización
3.
Sci Total Environ ; 884: 163799, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127165

RESUMEN

This study reports on the field testing of a newly and originally designed laser absorption spectroscopy chamber (LASC) system based on closed dynamic chamber method, which is well suited for multi-point synchronous measurement of ammonia emissions in field multiple plot experiment. Main design feature of the LASC system is individual multi-reflection cells for each chamber, achieving the synchronous in-situ monitoring ammonia emissions of all the chambers. Two movable covers for automated opening and closing of the chamber, and the highly transparent chamber walls made of acrylic plate minimize the disturbance of the chamber deployment on the ammonia transport process in the chamber. Controlled field assessment experiment was conducted to evaluate the applicability and reliability of the LASC system. The results indicated that the optimum time length of chamber closure for monitoring ammonia emission is 3 min, and the appropriate time length of chamber ventilation is 17 to 37 min. The LASC system has higher accuracy for measuring ammonia emission rate and reliability for comparatively measuring ammonia emissions from different treatments than the traditional chamber methods.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Amoníaco/análisis , Contaminantes Atmosféricos/análisis , Reproducibilidad de los Resultados , Análisis Espectral , Rayos Láser , Monitoreo del Ambiente/métodos
4.
Sci Total Environ ; 856(Pt 2): 159263, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206904

RESUMEN

Understanding the fate of exogenous fertilizer-derived inorganic phosphorus (Pi) is essential for effective P management. Hence, this study carried out a 180-day incubation experiment with or without KH2P18O4 in soils with four different fertilization regimes [without fertilizer (CK), mineral P and K fertilizer (PK), mineral N, P, and K fertilizer (NPK), compost (OM)]. We analyzed the atom % excess in phosphate oxygen isotope of sequentially extracted Pi pools (H2O-Pi, NaHCO3-Pi, NaOH-Pi, and HCl-Pi), soil respiration, potential phosphatase activities, and microbial biomass. Our results showed that exogenous phosphate fertilizer was immediately transformed into the H2O-Pi and NaHCO3-Pi pools and gradually partially immobilized in the HCl-Pi pool. Additionally, biotransformation plays an important role in the turnover of fertilizer-derived Pi. After the 180-day incubation, the biologically transformed H2O-Pi content was significantly (P<0.05) reduced by 63.2 % on average, with the largest reduction in PK. The NaHCO3-Pi gradually increased in both CK and OM through biotic processes. However, it continuously decreased in PK and NPK, likely due to the strong adsorption and microbial fixation. The NaOH-Pi fluctuated slightly in CK, NPK, and OM while gradually decreasing in PK. At the end of the incubation, 28.6 %, 37.0 %, 61.2 %, and 75.2 % of the Pi increment in CK, OM, NPK, and PK were stored in the HCl-Pi pool, respectively. Overall, these findings provide important information on the dynamics of fertilizer-derived Pi, delivering new insights into rational phosphate fertilizer management and sustainable agricultural development.


Asunto(s)
Fertilizantes , Fósforo , Fertilizantes/análisis , Fosfatos , Isótopos de Oxígeno , Oxígeno , Hidróxido de Sodio , Nitrógeno/análisis , Suelo , Agricultura/métodos , Microbiología del Suelo , Fertilización
5.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886929

RESUMEN

Soybeans are a major crop that produce the best vegetable oil and protein for use in food and beverage products worldwide. However, one of the most well-known viral infections affecting soybeans is the Soybean Mosaic Virus (SMV), a member of the Potyviridae family. A crucial method for preventing SMV damage is the breeding of resistant soybean cultivars. Adult resistance and resistance of seedcoat mottling are two types of resistance to SMV. Most studies have focused on adult-plant resistance but not on the resistance to seedcoat mottling. In this study, chromosome segment-substituted lines derived from a cross between Suinong14 (cultivated soybean) and ZYD00006 (wild soybean) were used to identify the chromosome region and candidate genes underlying soybean resistance to seed coat mottling. Herein, two quantitative trait loci (QTLs) were found on chromosome 17, and eighteen genes were found in the QTL region. RNA-seq was used to evaluate the differentially expressed genes (DEGs) among the eighteen genes located in the QTLs. According to the obtained data, variations were observed in the expression of five genes following SMV infection. Furthermore, Nicotiana benthamiana was subjected to an Agrobacterium-mediated transient expression assay to investigate the role of the five candidate genes in SMV resistance. It has also been revealed that Glyma.17g238900 encoding a RICE SALT SENSITIVE 3-like protein (RSS3L) can inhibit the multiplication of SMV in N.benthamiana. Moreover, two nonsynonymous single-nucleotide polymorphisms (SNPs) were found in the coding sequence of Glyma.17g238900 derived from the wild soybean ZYD00006 (GsRSS3L), and the two amino acid mutants may be associated with SMV resistance. Hence, it has been suggested that GsRSS3L confers seedcoat mottling resistance, shedding light on the mechanism of soybean resistance to SMV.


Asunto(s)
Glycine max , Potyvirus , Glicina , Fitomejoramiento , Enfermedades de las Plantas/genética , Glycine max/genética
6.
Front Microbiol ; 13: 829152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422775

RESUMEN

Conservation tillage is an advanced agricultural technology that seeks to minimize soil disturbance by reducing, or even eliminating tillage. Straw or stubble mulching in conservation tillage systems help to increase crop yield, maintain biodiversity and increase levels of exogenous nutrients, all of which may influence the structure of fungal communities in the soil. Currently, however, the assembly processes and co-occurrence patterns of fungal sub-communities remain unknown. In this paper, we investigated the effects of no-tillage and straw mulching on the composition, assembly process, and co-occurrence patterns of soil fungal sub-communities in a long-term experimental plot (15 years). The results revealed that combine straw mulching with no-tillage significantly increased the richness of fungi but not their diversity. Differential abundance analysis and principal component analysis (PCA) indicated that tillage management had a greater effect on the fungal communities of abundant and intermediate taxa than on the rare taxa. Available phosphorus (AP) and total nitrogen (TN) were the major determinants of fungal sub-communities in NT treatment. The abundant fungal sub-communities were assembled by deterministic processes under medium strength selection, while strong conservation tillage strength shifts the abundant sub-community assembly process from deterministic to stochastic. Overall, the investigation of the ecological network indicated that no-tillage and straw mulching practices decreased the complexity of the abundant and intermediate fungal networks, while not significantly influencing rare fungal networks. These findings refine our knowledge of the response of fungal sub-communities to conservation tillage management techniques and provide new insights into understanding fungal sub-community assembly.

7.
Environ Pollut ; 257: 113489, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31706773

RESUMEN

Ammonia emission is one of the dominant pathways of nitrogen fertilizer loss from rice fields in China. It is difficult to measure ammonia emissions by high-frequency sampling with the chamber methods widely used in China, which is of great significance for investigating the environmental effects on the ammonia emissions. The chamber methods also can not accurately determine the ammonia emissions. In this study, the backward Lagrangian stochastic dispersion model, with ammonia concentrations continuously measured by the open-path tunable diode laser absorption spectroscopy technique, was used to determine ammonia emissions from a rice field after fertilizer application at excessive (270 kg N ha-1) and appropriate (210 kg N ha-1) rates in the Taihu Lake Region of China. High temporal resolution measurements of ammonia emissions revealed that high intraday fluctuations of ammonia emissions were significantly affected by the meteorological conditions. Multiple regression analysis showed a dominant solar radiation dependence of intraday ammonia emission cycles, especially during the rice panicle formation stage. The NH4+-N concentrations of the surface water of the rice field were found to be the decisive factor that influenced interday dynamics of ammonia emissions. Accurate quantifications of ammonia emissions indicated that the total ammonia losses under appropriate nitrogen application rate were 27.4 kg N ha-1 during the rice tillering stage and 11.2 kg N ha-1 during the panicle formation stage, which were 29.4% and 17.0% less than those under traditional excessive nitrogen application rate used by the local farmers, respectively. The ammonia loss proportions during the rice panicle formation stage were significantly lower than those of the tillering stage, which might be due to different nitrogen application rates and environmental effects during the two stages. This study indicated that the open-path tunable diode laser absorption spectroscopy technique could facilitate the investigation of high temporal resolution dynamic of ammonia emissions from farmland and the environmental influence on the ammonia emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Fertilizantes/análisis , Nitrógeno/análisis , Agricultura/métodos , China , Monitoreo del Ambiente , Lagos/química , Oryza
8.
Sci Total Environ ; 692: 89-97, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31336305

RESUMEN

Reducing the applications of mineral phosphorus (P) fertilizers and supplementing them by organic fertilizers is becoming a necessary practice in the North China Plain due to overuse of mineral P fertilizers and improper disposal of organic wastes. Knowledge is needed about how the long-term substitution of mineral fertilizers by organic fertilizers affects soil P forms in order to understand soil P transformation and crop P uptake. In this study, we used solution 31P nuclear magnetic resonance (NMR) spectroscopy to characterize P forms in fluvo-aquic soil after 26 years of different fertilization management strategies, organic compost (OM), half compost in combination with half mineral fertilizer NPK (1/2 OM), mineral fertilizer NPK (NPK), mineral fertilizer NK (NK), and an unfertilized control (CK). Results showed that the P extraction efficiency using NaOH-EDTA varied from 13.0 to 27.7% for the soils of the treatments. 31P NMR spectra indicated that the majority of P was in the form of orthophosphate for all the treatments, which constituted 64.3-83.5% of the total extracted P. The application of P fertilizers significantly increased the concentrations of orthophosphate, monoesters and diesters regardless of the P fertilization method, although the proportions of monoesters and diesters were higher in CK. The proportions and concentrations of orthophosphate significantly decreased when all mineral fertilizers were replaced by compost. There was no significant difference in the proportions and concentrations of total organic P, corrected monoesters and diesters in NaOH-EDTA extracts of soils among NPK, 1/2OM and OM treatments. Decreasing mineral P fertilizers and partly replacing them by organic fertilizer in fluvo-aquic soil might increase soil test (Olsen) P and crop P uptake through the degradation of applied organic P forms.

9.
J Agric Food Chem ; 67(29): 8107-8118, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31260291

RESUMEN

Humic substances (HS) are vital to soil fertility and carbon sequestration. Using multiple cross-polarization/magic-angle spinning (multiCP/MAS) NMR combined with dipolar dephasing, we quantitatively characterized humic fractions, i.e., fulvic acid (FA), humic acid (HA), and humin (HM), isolated from two representative soils (upland and paddy soils) in China under six long-term (>20 years) fertilizer treatments. Results indicate that each humic fraction showed chemical distinction between the upland and paddy soils, especially with much greater aromaticity of upland HMs than of paddy HMs. Fertilizer treatment exerted greater influence on chemical natures of upland HS than of paddy HS, although the effect was less than that of soil type. Organic manure application especially decreased the percentages of aromatic C in the upland HAs and HMs compared with the control. We concluded that humic fractions responded in chemical nature to environmental conditions, i.e., soil type/cropping system/soil aeration and fertilizer treatments.


Asunto(s)
Sustancias Húmicas/análisis , Espectroscopía de Resonancia Magnética/métodos , Suelo/química , Carbono/análisis , China , Fertilizantes/análisis , Estiércol/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo
10.
Front Plant Sci ; 9: 1755, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538717

RESUMEN

Potassium (K) distribution is horizontally heterogeneous under the conservation agriculture approach of no-till with strip fertilization. The root foraging strategy of wheat for K heterogeneity is poorly understood. In this study, WinRHIZO, microarray, Non-invasive Micro-test Technology (NMT) and a split-root system were performed to investigate root morphology, gene expression profiling and fluxes of K+ and O2 under K heterogeneity and homogeneity conditions. The split-root system was performed as follows: C. LK (both compartments had low K), C. NK (both compartments had normal K), Sp. LK (one compartment had low K) and Sp. NK (the other compartment had normal K). The ratio of total root length and root tips in Sp. NK was significantly higher than that in C. NK, while no significant differences were found between Sp. LK and C. LK. Differential expression genes in C. LK vs. C. NK had opposite responses in Sp. LK vs. C. LK and similar responses in Sp. NK vs. C. NK. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding, glutathione transferase and cellular respiration genes were found to be up-regulated in Sp. NK. However, methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, and protein kinase activity genes were found to be down-regulated in Sp. LK. The up-regulated gene with function in respiration tended to increase K+ uptake through improving O2 influx on the root surface in Sp. NK, while the down-regulated genes with functions of K+ and O2 transport tended to reduce K+ uptake on the root surface in Sp. LK. To summarize, wheat roots tended to perform active-foraging strategies in Sp. NK and dormant-foraging strategies in Sp. LK through the following patterns: (1) root development in Sp. NK but not in Sp. LK; (2) low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, were up-regulated in Sp. NK but not in Sp. LK; and (3) root K+ and O2 influxes increased in Sp. NK but not in Sp. LK. Our findings may better explain the optimal root foraging strategy for wheat grown with heterogeneous K distribution in the root zone.

11.
Sci Total Environ ; 610-611: 1020-1028, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28847090

RESUMEN

Irrigation and nitrogen (N) fertilization in excess of crop requirements are responsible for substantial nitrate accumulation in the soil profile and contamination of groundwater by nitrate leaching during intensive agricultural production. In this on-farm field trial, we compared 16 different water and N treatments on nitrate accumulation and its distribution in the soil profile (0-180cm), nitrate leaching potential, and groundwater nitrate concentration within a summer-maize (Zea mays L.) and winter-wheat (Triticum aestivum L.) rotation system in the Huang-Huai-Hai Plain over five cropping cycles (2006-2010). The results indicated that nitrate remaining in the soil profile after crop harvest and nitrate concentration of soil solutions at two depths (80cm and 180cm) declined with increasing irrigation amounts and increased greatly with increasing N application rates, especially for seasonal N application rates higher than 190kgNha-1. During the experimental period, continuous torrential rainfall was the main cause for nitrate leaching beyond the root zone (180cm), which could pose potential risks for contamination of groundwater. Nitrate concentration of groundwater varied from 0.2 to 2.9mgL-1, which was lower than the limit of 10mgL-1 as the maximum safe level for drinking water. In view of the balance between grain production and environmental consequences, seasonal N application rates of 190kgNha-1 and 150kgNha-1 were recommended for winter wheat and summer maize, respectively. Irrigation to the field capacity of 0-40cm and 0-60cm soil depth could be appropriate for maize and wheat, respectively. Therefore, taking grain yields, mineral N accumulation in the soil profile, nitrate leaching potential, and groundwater quality into account, coupled water and N management could provide an opportunity to promote grain production while reducing negative environmental impacts in this region.

12.
Sci Total Environ ; 601-602: 356-364, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28570970

RESUMEN

Humin is the most recalcitrant fraction of soil organic matter (SOM). However, little is known about quantitative structural information on humin and the roles of soil mircoorganisms involved in the humin formation. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to provide deep insights into humin structural changes in response to long-term balanced fertilization on a Calcaric Fluvisol in the North China plain. The relationships between humin structure and microbiological properties such as microbial biomass, microbial quotient (qmic) and metabolic quotient (qCO2) were also studied. The humins had a considerable (35-44%) proportion of aromatic C being nonprotonated and the vast majority of O-alkyl and anomeric C being protonated. Alkyl (24-27% of all C), aromatic C (17-28%) and O-alkyl (13-20%) predominated in humins. Long-term fertilization promoted the aliphatic nature of humins, causing increases in O-alkyl, anomeric and NCH functional groups and decreases in aromatic C and aromatic CO groups. All these changes were more prominent for treatments of organic fertilizer (OF) and combined mineral NPK fertilizer with OF (NPKOF) relative to the Control and NPK treatments. Fertilization also decreased the alkyl/O-alkyl ratio, aromaticity and hydrophobic characteristics of humins, suggesting a more decomposed and humified state of humin in the Control soil. Moreover, the soil microbiological properties had strong correlations with functional groups of humins. Particularly, microbial biomass C was a relatively sensitive indicator, having positive correlations with oxygen-containing functional groups, i.e., COO/NCO and protonated O-alkyl C, and negative correlations with nonprotonated aromatic C. The qmic and qCO2 were also significantly positively correlated with NCH and aromatic CO, respectively. Our results deepen our understanding of how long-term fertilization impacts the structure of humin, and highlight a linkage between microbiological properties and recalcitrant fraction of SOM besides labile fraction.

13.
Sci Rep ; 6: 22186, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26916902

RESUMEN

Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by (13)C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition-results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities.


Asunto(s)
Actinobacteria/metabolismo , Alphaproteobacteria/metabolismo , Bacteroidetes/metabolismo , Firmicutes/metabolismo , Microbiota/genética , Triticum/metabolismo , Triticum/microbiología , Actinobacteria/genética , Alphaproteobacteria/genética , Bacteroidetes/genética , Biodiversidad , Biomasa , Carbono/análisis , Ecosistema , Firmicutes/genética , Nitrógeno/análisis , Suelo/química , Microbiología del Suelo , Temperatura , Triticum/química
14.
Sci Rep ; 5: 14851, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26423726

RESUMEN

The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.


Asunto(s)
Biomasa , Suelo , Triticum/química , Triticum/efectos de la radiación , Rayos Ultravioleta , Zea mays/química , Zea mays/efectos de la radiación , Resonancia Magnética Nuclear Biomolecular , Factores de Tiempo
15.
Sci Rep ; 5: 10090, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25985414

RESUMEN

Potassium (K(+)) deficiency as a common abiotic stress can inhibit the growth of plants and thus reduce the agricultural yields. Nevertheless, scarcely any development has been promoted in wheat transcriptional changes under K(+) deficiency. Here we investigated root transcriptional changes in two wheat genotypes, namely, low-K(+) tolerant "Tongzhou916" and low-K(+) susceptible "Shiluan02-1". There were totally 2713 and 2485 probe sets displayed expression changes more than 1.5-fold in Tongzhou916 and Shiluan02-1, respectively. Low-K(+) responsive genes mainly belonged to the categories as follows: metabolic process, cation binding, transferase activity, ion transporters and so forth. We made a comparison of gene expression differences between the two wheat genotypes. There were 1321 and 1177 up-regulated genes in Tongzhou916 and Shiluan02-1, respectively. This result indicated that more genes took part in acclimating to low-K(+) stress in Tongzhou916. In addition, there were more genes associated with jasmonic acid, defense response and potassium transporter up-regulated in Tongzhou916. Moreover, totally 19 genes encoding vacuolar H(+)-pyrophosphatase, ethylene-related, auxin response, anatomical structure development and nutrient reservoir were uniquely up-regulated in Tongzhou916. For their important role in root architecture, K(+) uptake and nutrient storage, unique genes above may make a great contribution to the strong low-K(+) tolerance in Tongzhou916.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Deficiencia de Potasio/genética , Deficiencia de Potasio/metabolismo , Transcriptoma , Triticum/genética , Triticum/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Genes de Plantas , Genotipo , Anotación de Secuencia Molecular , Potasio/metabolismo , Reproducibilidad de los Resultados , Estrés Fisiológico
16.
Environ Sci Pollut Res Int ; 21(17): 10377-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24793068

RESUMEN

Continuous application of organic and inorganic fertilizers can affect soil and food quality with respect to heavy metal concentrations. The risk of cadmium (Cd) contamination in a long-term (over 20 years) experimental field in North China with an annual crop rotation of winter wheat and summer maize was investigated. The long-term experiment had a complete randomized block design with seven fertilizer treatments and four replications. The seven fertilizer treatments were (1) organic compost (OM), (2) half organic compost plus half chemical fertilizer (OM + NPK), (3) NPK fertilizer (NPK), (4-6) chemical fertilizers without one of the major nutrients (NP, PK, and NK), and (7) an unamended control (CK). Soil samples from 0 to 20 cm were collected in 1989, 1999, and 2009 to characterize Cd and other soil properties. During the past 20 years, various extents of Cd accumulation were observed in the soil, and the accumulation was mainly affected by atmospheric dry and wet deposition and fertilization. In 2009, the average Cd concentration in the soil was 148 ± 15 µg kg(-1) and decreased in the order of NPK ≈ OM + NKP ≈ PK > NP ≈ NK > OM ≈ CK. Sequential extraction of Cd showed that the acid-soluble fraction (F1, 32 ± 7 %) and the residual fraction (F4, 31 ± 5 %) were the dominant fractions of Cd in the soil, followed by the reducible fraction (F2, 22 ± 5 %) and oxidizable fraction (F3, 15 ± 6 %). The acid-soluble Cd fraction in the soil and Cd accumulation in the crops increased with soil plant available K. Fraction F3 was increased by soil organic C (SOC) and crop yields, but SOC reduced the uptake of soil Cd by crops. The long-term P fertilization resulted in more Cd buildup in the soil than other treatments, but the uptake of Cd by crops was inhibited by the precipitation of Cd with phosphate in the soil. Although soil Cd was slightly increased over the 20 years of intensive crop production, both soil and grain/kernel Cd concentrations were still below the national standards for environmental and food safety.


Asunto(s)
Cadmio/química , Cadmio/metabolismo , Productos Agrícolas/metabolismo , Fertilizantes/análisis , Suelo/química , Cadmio/análisis , Productos Agrícolas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA