Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3717, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697983

RESUMEN

The chiral antiferromagnetic (AFM) materials, which have been widely investigated due to their rich physics, such as non-zero Berry phase and topology, provide a platform for the development of antiferromagnetic spintronics. Here, we find two distinctive anomalous Hall effect (AHE) contributions in the chiral AFM Mn3Pt, originating from a time-reversal symmetry breaking induced intrinsic mechanism and a skew scattering induced topological AHE due to an out-of-plane spin canting with respect to the Kagome plane. We propose a universal AHE scaling law to explain the AHE resistivity ( ρ A H ) in this chiral magnet, with both a scalar spin chirality (SSC)-induced skew scattering topological AHE term, a s k and non-collinear spin-texture induced intrinsic anomalous Hall term, b i n . We found that a s k and b i n can be effectively modulated by the interfacial electron scattering, exhibiting a linear relation with the inverse film thickness. Moreover, the scaling law can explain the anomalous Hall effect in various chiral magnets and has far-reaching implications for chiral-based spintronics devices.

2.
Phys Rev Lett ; 128(21): 217702, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687442

RESUMEN

Antiferromagnetic insulators have recently been proved to support spin current efficiently. Here, we report the dampinglike spin-orbit torque (SOT) in Pt/NiO/CoFeB has a strong temperature dependence and reverses the sign below certain temperatures, which is different from the slight variation with temperature in the Pt/CoFeB bilayer. The negative dampinglike SOT at low temperatures is proposed to be mediated by the magnetic interactions that tie with the "exchange bias" in Pt/NiO/CoFeB, in contrast to the thermal-magnon-mediated scenario at high temperatures. Our results highlight the promise to control the SOT through tuning the magnetic structure in multilayers.

3.
Fundam Res ; 2(4): 522-534, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38934004

RESUMEN

Over the past few decades, the diversified development of antiferromagnetic spintronics has made antiferromagnets (AFMs) interesting and very useful. After tough challenges, the applications of AFMs in electronic devices have transitioned from focusing on the interface coupling features to achieving the manipulation and detection of AFMs. As AFMs are internally magnetic, taking full use of AFMs for information storage has been the main target of research. In this paper, we provide a comprehensive description of AFM spintronics applications from the interface coupling, read-out operations, and writing manipulations perspective. We examine the early use of AFMs in magnetic recordings and conventional magnetoresistive random-access memory (MRAM), and review the latest mechanisms of the manipulation and detection of AFMs. Finally, based on exchange bias (EB) manipulation, a high-performance EB-MRAM is introduced as the next generation of AFM-based memories, which provides an effective method for read-out and writing of AFMs and opens a new era for AFM spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA