Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36142037

RESUMEN

The presence of organic co-substrate in groundwater and soils is inevitable, and much remains to be learned about the roles of organic co-substrates during pyrite-based denitrification. Herein, an organic co-substrate (acetate) was added to a pyrite-based denitrification system, and the impact of the organic co-substrate on the performance and bacterial community of pyrite-based denitrification processes was evaluated. The addition of organic co-substrate at concentrations higher than 48 mg L-1 inhibited pyrite-based autotrophic denitrification, as no sulfate was produced in treatments with high organic co-substrate addition. In contrast, both competition and promotion effects on pyrite-based autotrophic denitrification occurred with organic co-substrate addition at concentrations of 24 and 48 mg L-1. The subsequent validation experiments suggested that competition had a greater influence than promotion when organic co-substrate was added, even at a low concentration. Thiobacillus, a common chemolithoautotrophic sulfur-oxidizing denitrifier, dominated the system with a relative abundance of 13.04% when pyrite served as the sole electron donor. With the addition of organic co-substrate, Pseudomonas became the dominant genus, with 60.82%, 61.34%, 70.37%, 73.44%, and 35.46% abundance at organic matter concentrations of 24, 48, 120, 240, and 480 mg L-1, respectively. These findings provide an important theoretical basis for the cultivation of pyrite-based autotrophic denitrifying microorganisms for nitrate removal in soils and groundwater.


Asunto(s)
Desnitrificación , Nitratos , Procesos Autotróficos , Reactores Biológicos/microbiología , Hierro , Nitratos/química , Suelo , Sulfuros , Azufre
2.
Artículo en Inglés | MEDLINE | ID: mdl-33805028

RESUMEN

In southern China, the growing period of rice is synchronized with the rainy period, and the loss of nutrients (such as nitrogen) due to unreasonable irrigation and drainage, along with rainfall and runoff, has become the main source of agricultural nonpoint source pollution. The laws of runoff and nitrogen loss in paddy fields under different irrigation and drainage modes are not clear. In this study, field experiments were adopted to observe the runoff and nitrogen loss under typical rainfall and throughout the whole growth period. The results showed that, compared with the traditional irrigation and drainage mode, the controlled irrigation and drainage mode reduced the drainage of two typical rainfall processes by 47.5% and 31.3% and the peak drainage by 38.9% and 14.4%. Compared with those under the traditional irrigation and drainage mode, the average concentrations of total nitrogen, nitrate nitrogen, and ammonium nitrogen under the controlled irrigation and drainage mode were reduced by 22.2%, 22.7%, and 27.8%, respectively, during the whole rainfall process on July 21 and were decreased by 27.1%, 11.4%, and 25.6%, respectively, on August 25. In irrigated rice areas, under the controlled irrigation and drainage mode, drainage was reduced after two intercepts through paddy fields and drainage ditches. The nitrogen concentration in the drainage ditch decreased due to the increase in retention time and the effect of the ditch and field wetland. Compared with the traditional irrigation and drainage mode, the total nitrogen, nitrate nitrogen, and ammonium nitrogen loads of the controlled irrigation and drainage mode were reduced by 69.8%, 65.3%, and 69.7%, respectively.


Asunto(s)
Nitrógeno , Oryza , Riego Agrícola , Agricultura , China , Nitrógeno/análisis , Fósforo/análisis , Lluvia
3.
Environ Sci Pollut Res Int ; 22(6): 4406-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25304242

RESUMEN

Non-point source (NPS) pollution from agricultural drainage has aroused widespread concerns throughout the world due to its contribution to eutrophication of water bodies. To remove nitrogen (N) and phosphorus (P) from agricultural drainage in situ, a Paddy Eco-ditch and Wetland System (PEDWS) was designed and built based on the characteristics of the irrigated rice district. A 2-year (2012-2013) field experiment was conducted to evaluate the performance of this system in Gaoyou Irrigation District in Eastern China. The results showed that the reduction in water input in paddy field of the PEDWS enabled the maintenance of high rice yield; it significantly increased irrigation water productivity (WPI), gross water productivity (WPG), and evapotranspiration water productivity (WPET) by 109.2, 67.1, and 17.6%, respectively. The PEDWS dramatically decreased N and P losses from paddy field. Compared with conventional irrigation and drainage system (CIDS), the amount of drainage water from PEDWS was significantly reduced by 56.2%, the total nitrogen (TN) concentration in drainage was reduced by 42.6%, and thus the TN and total phosphorus (TP) losses were reduced by 87.8 and 70.4%. PEDWS is technologically feasible and applicable to treat nutrient losses from paddy fields in situ and can be used in similar areas.


Asunto(s)
Riego Agrícola/métodos , Agricultura/métodos , Contaminación Ambiental/prevención & control , Oryza/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Humedales , China , Nitrógeno/análisis , Nitrógeno/aislamiento & purificación , Fósforo/análisis , Fósforo/aislamiento & purificación , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA